A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorab...A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorable for both the solid-liquid synthesis and the densification of Ti3SiC2 rainies. The present work demonstrated that the temperature fluctuation synthesis/simultaneous densification process is one of the most effective and simple methods for the preparation of Ti3SiC2 bulk materials providing relatively low synthesis temperature. short reaction time; and simultaneous synthesis and densification. This work also showed the capability to control the microstructure, e.g., the preferred orientation, of the bulk Ti3SiC2 materials simply by applying the hot pressing pressure at different Stages of the temperature fluctuation process. And textured Ti3SiC2 bulk materials with {002} faces of laminated Ti3SiC2 grains normal to the hot pressing axis were prepared.展开更多
According to the sensing structure of a practical silicon resonant pressure micro sensor whose preliminary sensing unit is a square silicon diaphragm and the final sensing unit is a silicon beam resonator, its operati...According to the sensing structure of a practical silicon resonant pressure micro sensor whose preliminary sensing unit is a square silicon diaphragm and the final sensing unit is a silicon beam resonator, its operating mechanism is analyzed. The thermal resistor acts as the excited unit, and the piezoresistive unit acts as the detector, for the above micro sensor. By using the amplitude and phase conditions, the self exciting closed loop system is investigated based on the operating mechanism for the abov...展开更多
Some superhydrophobic siliconbased surfaces with periodic square pillar array microstructures were designed and fabricated, also their apparent contact angles (CAs) were quantitatively measured. On the basis of the ...Some superhydrophobic siliconbased surfaces with periodic square pillar array microstructures were designed and fabricated, also their apparent contact angles (CAs) were quantitatively measured. On the basis of the classical Wenzel's theory and Cassie's theory, two generally applicable equations corresponding of the cases of wetted contact and composite contact, which could reflect the relations between geometrical parameters of square pillar microstructures and apparent CAs, were educed. Then a theoretical prediction of the fabricated siliconbased surfaces was carried out by the equations, which was compatible with the result of experimental measurement, and this showed the rationality of the educed equations. The CAs of the surface prepared by merely plasma etching to create microstructures and by only Teflon treating were compared, and the result indicated that the effect of the former on achieving hydrophobic surfaces was greater than that of the later. Under the premise of synthetically considering transition between the two contact states, the effects of geometrical parameters of the square pillar microstructures to hydrophobicity were analyzcation, thereon a design condition and a design principle for super-hydrophobic surfaces which would be of specific application value were summarized.展开更多
Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure,...Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.展开更多
Biomorphic silicon carbide (bioSiC) with macro-channels and alveolate micropores was prepared by spontaneous infiltration of melted silicon into a carbon template derived from lotus root at 1600cC. The carbon templa...Biomorphic silicon carbide (bioSiC) with macro-channels and alveolate micropores was prepared by spontaneous infiltration of melted silicon into a carbon template derived from lotus root at 1600cC. The carbon template and purified bioSiC samples were characterized by X-ray diffraction, scanning electron microscopy, camera and mercury intrusion. The results suggest that the bioSiC mainly consists of β-SiC and perfectly replicates the shape and microstructure of the carbon template. The bioSiC has a mean pore diameter of 91.1 μm and a porosity of 50.1%, both similar to those of the carbon template, 92.3 μm and 50.7%, respectively.展开更多
基金the National Outstanding YOung Scientist Foundation Under Grant !No.59925208 the National Natural Science Foundation of China
文摘A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorable for both the solid-liquid synthesis and the densification of Ti3SiC2 rainies. The present work demonstrated that the temperature fluctuation synthesis/simultaneous densification process is one of the most effective and simple methods for the preparation of Ti3SiC2 bulk materials providing relatively low synthesis temperature. short reaction time; and simultaneous synthesis and densification. This work also showed the capability to control the microstructure, e.g., the preferred orientation, of the bulk Ti3SiC2 materials simply by applying the hot pressing pressure at different Stages of the temperature fluctuation process. And textured Ti3SiC2 bulk materials with {002} faces of laminated Ti3SiC2 grains normal to the hot pressing axis were prepared.
基金The Chinese Aeronautics Science Foundation(99I5 10 0 6)Foundation for University Key Teacherby the Ministry of Education
文摘According to the sensing structure of a practical silicon resonant pressure micro sensor whose preliminary sensing unit is a square silicon diaphragm and the final sensing unit is a silicon beam resonator, its operating mechanism is analyzed. The thermal resistor acts as the excited unit, and the piezoresistive unit acts as the detector, for the above micro sensor. By using the amplitude and phase conditions, the self exciting closed loop system is investigated based on the operating mechanism for the abov...
基金National Natural Science Foundation of China (No. 50435030).
文摘Some superhydrophobic siliconbased surfaces with periodic square pillar array microstructures were designed and fabricated, also their apparent contact angles (CAs) were quantitatively measured. On the basis of the classical Wenzel's theory and Cassie's theory, two generally applicable equations corresponding of the cases of wetted contact and composite contact, which could reflect the relations between geometrical parameters of square pillar microstructures and apparent CAs, were educed. Then a theoretical prediction of the fabricated siliconbased surfaces was carried out by the equations, which was compatible with the result of experimental measurement, and this showed the rationality of the educed equations. The CAs of the surface prepared by merely plasma etching to create microstructures and by only Teflon treating were compared, and the result indicated that the effect of the former on achieving hydrophobic surfaces was greater than that of the later. Under the premise of synthetically considering transition between the two contact states, the effects of geometrical parameters of the square pillar microstructures to hydrophobicity were analyzcation, thereon a design condition and a design principle for super-hydrophobic surfaces which would be of specific application value were summarized.
基金financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110006110025)the National Natural Science Foundation of China(No.U1134102)
文摘Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.
基金supported by the National Natural Sci-ence Foundation of China under the Grant No. 20471067
文摘Biomorphic silicon carbide (bioSiC) with macro-channels and alveolate micropores was prepared by spontaneous infiltration of melted silicon into a carbon template derived from lotus root at 1600cC. The carbon template and purified bioSiC samples were characterized by X-ray diffraction, scanning electron microscopy, camera and mercury intrusion. The results suggest that the bioSiC mainly consists of β-SiC and perfectly replicates the shape and microstructure of the carbon template. The bioSiC has a mean pore diameter of 91.1 μm and a porosity of 50.1%, both similar to those of the carbon template, 92.3 μm and 50.7%, respectively.