To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas ...To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas liquid separation model, simplified CO2 removal model and tail gas cycle model was developed. An effective iteration algorithm was proposed to solve this process model, and the model was validated by industrial demonstration experiments data (SBCR with 5.8 m diameter and 30 m height), with a maximum relative error 〈 10% for predicting the SBCR performances. Subsequently, the proposed model was adopted to optimize the industrial SBCR performances simultaneously considering process and reactor parameters variations. The results show that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6, but it doesn't increase obviously when the catalyst loading exceeds 45 ton (about 15 wt% concentration). Higher catalyst loading will result in higher difficulty for wax/catalyst separation and higher catalyst cost. There- fore, the catalyst loading (45 ton) is recommended for the industrial demonstration SBCR operation at syngas H2/ CO = 1.3, and the C5 + yield is about 402 ton" per day, which has an about 16% increase than the industrial dem- onstration run result.展开更多
A new concentration transducer for the measurement of gas/solid two-phase flow in the profile of pipeline was studied. The design of grid electrode was employed, and hence the distribute of electric field in the space...A new concentration transducer for the measurement of gas/solid two-phase flow in the profile of pipeline was studied. The design of grid electrode was employed, and hence the distribute of electric field in the space was homogeneous effectively. The variance of measurement value for the influence of flow regime variations has greatly reduced, and the precision of measurement was improved. Meanwhile, optimization of axial property in the grid electrode increases the ability of tracing and measuring of the concentration signal in real-time.展开更多
At present, methanol to propylene(MTP) technology developed by Lurgi Company is adopted for commercial plants and refined methanol with the purity ≥99.85 wt% is required as the feed of MTP unit in Lurgi's technol...At present, methanol to propylene(MTP) technology developed by Lurgi Company is adopted for commercial plants and refined methanol with the purity ≥99.85 wt% is required as the feed of MTP unit in Lurgi's technology.Therefore, high energy cost for refined methanol production is one of the bottlenecks to improve the economy of MTP technology. Reducing the grade of feed refined methanol may be an effective method to save energy and reduce operation costs in MTP process. In this work, experiments and process simulation were carried out to investigate the influence and feasibility of degrading the methanol feed. Experiments were conducted to investigate the influence of crude methanol feed on conversion and selectivity of MTP reaction as well as the performance of ZSM-5 catalyst. The experimental results showed that degrading the methanol feed had no obvious influence on the conversion and selectivity of MTP reactions and the catalyst deactivation was caused by the carbon accumulation and metals deposition on the active sites. The process simulation results showed that the influence on the conversion and selectivity as well as the stream load of MTP process was negligible if 98 mol% methanol was used as feed. Finally, industrial experiments were conducted by adjusting the operation parameters to degrade of feed methanol of the commercial 500 kt·a^(-1) MTP unit of Ningmei Group in China. The results of industrial application illustrated that annually 180 kt fuel coal and 150 kt desalted water as well as 1770 MW·h^(-1) electricity would be saved when the water content increased from 0.01% to 0.4%. This work has identified the feasibility to improve MTP technology by degrading the methanol feed.展开更多
Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled an...Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled and three fundamental aspects are examined,namely,the open area of the air intake grille,the position of the upper and lower grilles and their shape.The results show that the opening area and position of the grille have some influence also on the aerodynamic characteristics of the automobile.With an increase in the opening angle of the grille,the CD(Drag Coefficient)value of the whole vehicle becomes higher.When the air intake grille of the car is fully open or closed,the CD value is 0.35434 or 0.31777,respectively,that is,the flow resistance in the engine compartment accounts for 10.32%of the CD value for the whole automobile.展开更多
Due to the shortage of fossil energy,biomass has a potential to be a very promising alternative source.Unfortunately,a large part of biomass resources worldwide causes serious environmental pollution,low value-added u...Due to the shortage of fossil energy,biomass has a potential to be a very promising alternative source.Unfortunately,a large part of biomass resources worldwide causes serious environmental pollution,low value-added utilization and energy waste due to unsustainable utilization of biomass.Simulation and optimization of the thermochemical utilization of biomass resources is a hot issue in the industry and academia,which can provide the relationship between the utilizations of biomass with sustainable objective and compositions of biomass,operational parameters,etc.This review focused on the theoretical research progress of sustainable utilization of biomass resources from three aspects:basic thermochemical data estimation,process simulation and system optimization of pyrolysis and gasification.And the application of artificial intelligence as a tool in the field of above three aspects was also introduced.Advantages and limitations of current methods,as well as future opportunities and challenges were also discussed.展开更多
Combinatorial method of simulation and optimization can combine the merits of both methods, provide effectively simulation support for transportation decision maldng.In tills paper, the simulation and optimization mod...Combinatorial method of simulation and optimization can combine the merits of both methods, provide effectively simulation support for transportation decision maldng.In tills paper, the simulation and optimization models for a transportation system of coal wharf are introduced, and their combination mechanism for constructing a simulation support system is presented.展开更多
To avoid ergonomic problems in the early planning stages of a production line and achieve more satisfactory planning and design, ergonomic simulation is particularly important in digital production line planning. An e...To avoid ergonomic problems in the early planning stages of a production line and achieve more satisfactory planning and design, ergonomic simulation is particularly important in digital production line planning. An ergonomics analysis method is presented by using two theories: Ovako working posture analysis system (OWAS) and Burandt-Schultetus hand-arm force analysis (BSHA). The processes of ergonomics analysis and simulation are discussed based on a platform of process simulation and process designer. As an example, the paper shows how ergonomics problems are considered in production line planning to make a better choice between different production line planning schemes.展开更多
基金Supported by the National Key R&D Program of China(2017YFB0602500)
文摘To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas liquid separation model, simplified CO2 removal model and tail gas cycle model was developed. An effective iteration algorithm was proposed to solve this process model, and the model was validated by industrial demonstration experiments data (SBCR with 5.8 m diameter and 30 m height), with a maximum relative error 〈 10% for predicting the SBCR performances. Subsequently, the proposed model was adopted to optimize the industrial SBCR performances simultaneously considering process and reactor parameters variations. The results show that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6, but it doesn't increase obviously when the catalyst loading exceeds 45 ton (about 15 wt% concentration). Higher catalyst loading will result in higher difficulty for wax/catalyst separation and higher catalyst cost. There- fore, the catalyst loading (45 ton) is recommended for the industrial demonstration SBCR operation at syngas H2/ CO = 1.3, and the C5 + yield is about 402 ton" per day, which has an about 16% increase than the industrial dem- onstration run result.
文摘A new concentration transducer for the measurement of gas/solid two-phase flow in the profile of pipeline was studied. The design of grid electrode was employed, and hence the distribute of electric field in the space was homogeneous effectively. The variance of measurement value for the influence of flow regime variations has greatly reduced, and the precision of measurement was improved. Meanwhile, optimization of axial property in the grid electrode increases the ability of tracing and measuring of the concentration signal in real-time.
基金Supported by the National Key R&D Program of China(2017YFB0601902)
文摘At present, methanol to propylene(MTP) technology developed by Lurgi Company is adopted for commercial plants and refined methanol with the purity ≥99.85 wt% is required as the feed of MTP unit in Lurgi's technology.Therefore, high energy cost for refined methanol production is one of the bottlenecks to improve the economy of MTP technology. Reducing the grade of feed refined methanol may be an effective method to save energy and reduce operation costs in MTP process. In this work, experiments and process simulation were carried out to investigate the influence and feasibility of degrading the methanol feed. Experiments were conducted to investigate the influence of crude methanol feed on conversion and selectivity of MTP reaction as well as the performance of ZSM-5 catalyst. The experimental results showed that degrading the methanol feed had no obvious influence on the conversion and selectivity of MTP reactions and the catalyst deactivation was caused by the carbon accumulation and metals deposition on the active sites. The process simulation results showed that the influence on the conversion and selectivity as well as the stream load of MTP process was negligible if 98 mol% methanol was used as feed. Finally, industrial experiments were conducted by adjusting the operation parameters to degrade of feed methanol of the commercial 500 kt·a^(-1) MTP unit of Ningmei Group in China. The results of industrial application illustrated that annually 180 kt fuel coal and 150 kt desalted water as well as 1770 MW·h^(-1) electricity would be saved when the water content increased from 0.01% to 0.4%. This work has identified the feasibility to improve MTP technology by degrading the methanol feed.
文摘Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled and three fundamental aspects are examined,namely,the open area of the air intake grille,the position of the upper and lower grilles and their shape.The results show that the opening area and position of the grille have some influence also on the aerodynamic characteristics of the automobile.With an increase in the opening angle of the grille,the CD(Drag Coefficient)value of the whole vehicle becomes higher.When the air intake grille of the car is fully open or closed,the CD value is 0.35434 or 0.31777,respectively,that is,the flow resistance in the engine compartment accounts for 10.32%of the CD value for the whole automobile.
基金support from the National Natural Science Foundation of China(Grant No.:21776046,21878337,21676291)the Fundamental Research Funds for the Central Universities(Grant No.2242020K40033).
文摘Due to the shortage of fossil energy,biomass has a potential to be a very promising alternative source.Unfortunately,a large part of biomass resources worldwide causes serious environmental pollution,low value-added utilization and energy waste due to unsustainable utilization of biomass.Simulation and optimization of the thermochemical utilization of biomass resources is a hot issue in the industry and academia,which can provide the relationship between the utilizations of biomass with sustainable objective and compositions of biomass,operational parameters,etc.This review focused on the theoretical research progress of sustainable utilization of biomass resources from three aspects:basic thermochemical data estimation,process simulation and system optimization of pyrolysis and gasification.And the application of artificial intelligence as a tool in the field of above three aspects was also introduced.Advantages and limitations of current methods,as well as future opportunities and challenges were also discussed.
文摘Combinatorial method of simulation and optimization can combine the merits of both methods, provide effectively simulation support for transportation decision maldng.In tills paper, the simulation and optimization models for a transportation system of coal wharf are introduced, and their combination mechanism for constructing a simulation support system is presented.
文摘To avoid ergonomic problems in the early planning stages of a production line and achieve more satisfactory planning and design, ergonomic simulation is particularly important in digital production line planning. An ergonomics analysis method is presented by using two theories: Ovako working posture analysis system (OWAS) and Burandt-Schultetus hand-arm force analysis (BSHA). The processes of ergonomics analysis and simulation are discussed based on a platform of process simulation and process designer. As an example, the paper shows how ergonomics problems are considered in production line planning to make a better choice between different production line planning schemes.