Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve th...Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve the autonomous navigation ability of mobile robots and their adaptability to different application environments and contribute to the realization of real-time obstacle avoidance and dynamic path planning.Moreover,the application of SLAM technology has expanded from industrial production,intelligent transportation,special operations and other fields to agricultural environments,such as autonomous navigation,independent weeding,three-dimen-sional(3D)mapping,and independent harvesting.This paper mainly introduces the principle,sys-tem framework,latest development and application of SLAM technology,especially in agricultural environments.Firstly,the system framework and theory of the SLAM algorithm are introduced,and the SLAM algorithm is described in detail according to different sensor types.Then,the devel-opment and application of SLAM in the agricultural environment are summarized from two aspects:environment map construction,and localization and navigation of agricultural robots.Finally,the challenges and future research directions of SLAM in the agricultural environment are discussed.展开更多
Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major d...Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major drawbacks: one is particle set degeneracy due to lack of observation information in proposal distribution design of the particle filter; the other is errors accumulation caused by linearization of the nonlinear robot motion model and the nonlinear environment observation model. For the purpose of overcoming the above problems, a new iterated sigma point FastSLAM (ISP-FastSLAM) algorithm is proposed. The main contribution of the algorithm lies in the utilization of iterated sigma point Kalman filter (ISPKF), which minimizes statistical linearization error through Gaussian-Newton iteration, to design an optimal proposal distribution of the particle filter and to estimate the environment landmarks. On the basis of Rao-Blackwellized particle filter, the proposed ISP-FastSLAM algorithm is comprised by two main parts: in the first part, an iterated sigma point particle filter (ISPPF) to localize the robot is proposed, in which the proposal distribution is accurately estimated by the ISPKF; in the second part, a set of ISPKFs is used to estimate the environment landmarks. The simulation test of the proposed ISP-FastSLAM algorithm compared with FastSLAM2.0 algorithm and Unscented FastSLAM algorithm is carried out, and the performances of the three algorithms are compared. The simulation and comparing results show that the proposed ISP-FastSLAM outperforms other two algorithms both in accuracy and in robustness. The proposed algorithm provides reference for the optimization research of FastSLAM algorithm.展开更多
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o...At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.展开更多
A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment....A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable.展开更多
An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the ob...An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.展开更多
A new method for speeding up the state augment operations involved in the compressed extended Kalman filter-based simultaneous localization and mapping (CEKF-SLAM) algorithm was proposed. State augment usually requi...A new method for speeding up the state augment operations involved in the compressed extended Kalman filter-based simultaneous localization and mapping (CEKF-SLAM) algorithm was proposed. State augment usually requires a fully-updated state eovariance so as to append the information of newly observed landmarks, thus computational volume increases quadratically with the number of landmarks in the whole map. It was proved that state augment can also be achieved by augmenting just one auxiliary coefficient ma- trix. This method can yield identical estimation results as those using EKF-SLAM algorithm, and computa- tional amount grows only linearly with number of increased landmarks in the local map. The efficiency of this quick state augment for CEKF-SLAM algorithm has been validated by a sophisticated simulation project.展开更多
In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers ...In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers are utilized as labels. These labels are captured by two webcams,then the distances and angles between the labels and webcams are computed. Motion estimated from the two rear wheel encoders is adjusted by observing QR codes. Our system uses the extended Kalman filter( EKF) for the back-end state estimation. The number of deployed labels controls the state estimation dimension. The label-based EKF-SLAM system eliminates complicated processes,such as data association and loop closure detection in traditional feature-based visual SLAM systems. Our experiments include software-simulation and robot-platform test in a real environment. Results demonstrate that the system has the capability of correcting accumulated errors of dead reckoning and therefore has the advantage of superior precision.展开更多
A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved associa...A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigatioJ~ error.展开更多
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de...Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.展开更多
A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guar...A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF), where the particle filter is used to extending the path posterior by sampling new poses. The landmark position estimation and update is implemented through extended Kalman filter (EKF). Monocular vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching scale invariant feature transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-tree in the time cost of O(lbN). Experiment results on Pioneer mobile robot in a real indoor environment show the superior performance of our proposed method.展开更多
In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the po...In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.展开更多
We present an investigation into the use of pan tilt zoom camera and sonar sensors for simuhaneous localization and mapping with artificial colored landmarks. An improved particle filter is applied to estimate a poste...We present an investigation into the use of pan tilt zoom camera and sonar sensors for simuhaneous localization and mapping with artificial colored landmarks. An improved particle filter is applied to estimate a posterior of the pose of the robot, in which each particle has associated it with an entire map. The distributions of landmarks are also represented by particle sets, where separate particles are used to represent the robot and the landmarks. Hough transform is used to extract line segments from sonar observations and build map simultaneously. The key advantage of our method is that the full posterior over robot poses and landmarks can be nonlinearly approximated at every point in time by particles. Especially the landmarks are affixed on the moving robots, which can reduce the impact of the depletion problem and the impoverishment problem produced by basic particle filter. Experimental results show that this approach has advantages over the basic particle filter and the extended Kalman filter.展开更多
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o...Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.展开更多
In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, ...In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, with the combination of iterative closest points (ICP) algorithm and Gaussian model for particles updating, the matching between the local map and the global map to quantify particles' importance weight. The crude estimation by using ICP algorithm can find the high probability area of autonomous vehicles' poses, which would decrease particle numbers, increase algorithm speed and restrain particles' impoverishment. The calculation of particles' importance weight based on matching of attribute between grid maps is simple and practicable. Experiments carried out with the autonomous vehicle platform validate the effectiveness of our approaches.展开更多
同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLA...同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLAM性能下降。现有的概率假设密度(Probability Hypothesis Density,PHD)SLAM算法未考虑随机突变噪声,受到干扰时在线自适应调整能力较弱。为解决移动机器人因随机突变噪声导致状态估计和建图精度降低的问题,本文结合强跟踪滤波器(Strong Tracking Filter,STF)与PHD滤波器,提出了一种基于强跟踪的自适应PHD-SLAM滤波算法(Strong Tracking Probability Hypothesis Density Simultaneous Localization and Mapping,STPHD-SLAM)。该算法以PHD-SLAM为框架,针对过程噪声协方差和量测噪声协方差随机突变问题,本文通过在特征预测协方差中引入STF中的渐消因子,实现了对特征预测的自适应修正和卡尔曼增益的动态调整,从而增强了算法的自适应能力。其中渐消因子根据量测新息递归更新,确保噪声突变时每个时刻的量测新息保持正交,从而充分利用量测信息,准确并且快速地跟踪突变噪声。针对渐消因子激增导致的滤波器发散问题,本文对渐消因子进行边界约束,提高算法的鲁棒性。仿真结果表明,在量测噪声协方差和过程噪声协方差随机突变的情况下,所提算法相较于PHD-SLAM 1.0和PHD-SLAM 2.0的定位和建图精度都得到了提高,同时保证了计算效率。展开更多
基金supported by the National Key Research and Development Program(No.2022YFD2001704).
文摘Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve the autonomous navigation ability of mobile robots and their adaptability to different application environments and contribute to the realization of real-time obstacle avoidance and dynamic path planning.Moreover,the application of SLAM technology has expanded from industrial production,intelligent transportation,special operations and other fields to agricultural environments,such as autonomous navigation,independent weeding,three-dimen-sional(3D)mapping,and independent harvesting.This paper mainly introduces the principle,sys-tem framework,latest development and application of SLAM technology,especially in agricultural environments.Firstly,the system framework and theory of the SLAM algorithm are introduced,and the SLAM algorithm is described in detail according to different sensor types.Then,the devel-opment and application of SLAM in the agricultural environment are summarized from two aspects:environment map construction,and localization and navigation of agricultural robots.Finally,the challenges and future research directions of SLAM in the agricultural environment are discussed.
基金supported by Open Foundation of State Key Laboratory of Robotics and System, China (Grant No. SKLRS-2009-ZD-04)National Natural Science Foundation of China (Grant No. 60909055, Grant No.61005070)Fundamental Research Funds for the Central Universities of China (Grant No. 2009JBZ001-2)
文摘Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major drawbacks: one is particle set degeneracy due to lack of observation information in proposal distribution design of the particle filter; the other is errors accumulation caused by linearization of the nonlinear robot motion model and the nonlinear environment observation model. For the purpose of overcoming the above problems, a new iterated sigma point FastSLAM (ISP-FastSLAM) algorithm is proposed. The main contribution of the algorithm lies in the utilization of iterated sigma point Kalman filter (ISPKF), which minimizes statistical linearization error through Gaussian-Newton iteration, to design an optimal proposal distribution of the particle filter and to estimate the environment landmarks. On the basis of Rao-Blackwellized particle filter, the proposed ISP-FastSLAM algorithm is comprised by two main parts: in the first part, an iterated sigma point particle filter (ISPPF) to localize the robot is proposed, in which the proposal distribution is accurately estimated by the ISPKF; in the second part, a set of ISPKFs is used to estimate the environment landmarks. The simulation test of the proposed ISP-FastSLAM algorithm compared with FastSLAM2.0 algorithm and Unscented FastSLAM algorithm is carried out, and the performances of the three algorithms are compared. The simulation and comparing results show that the proposed ISP-FastSLAM outperforms other two algorithms both in accuracy and in robustness. The proposed algorithm provides reference for the optimization research of FastSLAM algorithm.
基金supported by the National Science Fund of China under Grants 61603034China Postdoctoral Science Foundation under Grant 2019M653870XB+1 种基金Beijing Municipal Natural Science Foundation (3182027)Fundamental Research Funds for the Central Universities,China,FRF-GF-17-B44,and XJS191315
文摘At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.
基金Project (No. 2002AA735041) supported by the Hi-Tech Researchand Development Program (863) of China
文摘A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable.
基金Project(60234030) supported by the National Natural Science Foundation of China project(A1420060159) supported by the National Basic Research
文摘An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.
基金Sponsored by the Beijing Education Committee Cooperation Building Foundation Project
文摘A new method for speeding up the state augment operations involved in the compressed extended Kalman filter-based simultaneous localization and mapping (CEKF-SLAM) algorithm was proposed. State augment usually requires a fully-updated state eovariance so as to append the information of newly observed landmarks, thus computational volume increases quadratically with the number of landmarks in the whole map. It was proved that state augment can also be achieved by augmenting just one auxiliary coefficient ma- trix. This method can yield identical estimation results as those using EKF-SLAM algorithm, and computa- tional amount grows only linearly with number of increased landmarks in the local map. The efficiency of this quick state augment for CEKF-SLAM algorithm has been validated by a sophisticated simulation project.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University,National Science Foundation of China(61105092)the National Natural Science Foundation of China(61473042)
文摘In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers are utilized as labels. These labels are captured by two webcams,then the distances and angles between the labels and webcams are computed. Motion estimated from the two rear wheel encoders is adjusted by observing QR codes. Our system uses the extended Kalman filter( EKF) for the back-end state estimation. The number of deployed labels controls the state estimation dimension. The label-based EKF-SLAM system eliminates complicated processes,such as data association and loop closure detection in traditional feature-based visual SLAM systems. Our experiments include software-simulation and robot-platform test in a real environment. Results demonstrate that the system has the capability of correcting accumulated errors of dead reckoning and therefore has the advantage of superior precision.
基金Supported by the National Natural Science Foundation of China(51009040)National Defence Key Laboratory of Autonomous Underwater Vehicle Technology(2008002)Scientific Service Special Funds of University in China(E091002)
文摘A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigatioJ~ error.
基金Projects(60234030 60404021) supported by the National Natural Science Foundation of China
文摘Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.
基金The National High Technology Research and Development Program (863) of China (No2006AA04Z259)The National Natural Sci-ence Foundation of China (No60643005)
文摘A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF), where the particle filter is used to extending the path posterior by sampling new poses. The landmark position estimation and update is implemented through extended Kalman filter (EKF). Monocular vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching scale invariant feature transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-tree in the time cost of O(lbN). Experiment results on Pioneer mobile robot in a real indoor environment show the superior performance of our proposed method.
基金This work was supported by National Natural Science Foundation of China,Nos.62002359 and 61836015the Beijing Advanced Discipline Fund,No.115200S001.
文摘In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.
文摘We present an investigation into the use of pan tilt zoom camera and sonar sensors for simuhaneous localization and mapping with artificial colored landmarks. An improved particle filter is applied to estimate a posterior of the pose of the robot, in which each particle has associated it with an entire map. The distributions of landmarks are also represented by particle sets, where separate particles are used to represent the robot and the landmarks. Hough transform is used to extract line segments from sonar observations and build map simultaneously. The key advantage of our method is that the full posterior over robot poses and landmarks can be nonlinearly approximated at every point in time by particles. Especially the landmarks are affixed on the moving robots, which can reduce the impact of the depletion problem and the impoverishment problem produced by basic particle filter. Experimental results show that this approach has advantages over the basic particle filter and the extended Kalman filter.
文摘Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.
基金Supported by the Major Research Plan of the National Natural Science Foundation of China(91120003)Surface Project of the National Natural Science Foundation of China(61173076)
文摘In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, with the combination of iterative closest points (ICP) algorithm and Gaussian model for particles updating, the matching between the local map and the global map to quantify particles' importance weight. The crude estimation by using ICP algorithm can find the high probability area of autonomous vehicles' poses, which would decrease particle numbers, increase algorithm speed and restrain particles' impoverishment. The calculation of particles' importance weight based on matching of attribute between grid maps is simple and practicable. Experiments carried out with the autonomous vehicle platform validate the effectiveness of our approaches.
文摘同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLAM性能下降。现有的概率假设密度(Probability Hypothesis Density,PHD)SLAM算法未考虑随机突变噪声,受到干扰时在线自适应调整能力较弱。为解决移动机器人因随机突变噪声导致状态估计和建图精度降低的问题,本文结合强跟踪滤波器(Strong Tracking Filter,STF)与PHD滤波器,提出了一种基于强跟踪的自适应PHD-SLAM滤波算法(Strong Tracking Probability Hypothesis Density Simultaneous Localization and Mapping,STPHD-SLAM)。该算法以PHD-SLAM为框架,针对过程噪声协方差和量测噪声协方差随机突变问题,本文通过在特征预测协方差中引入STF中的渐消因子,实现了对特征预测的自适应修正和卡尔曼增益的动态调整,从而增强了算法的自适应能力。其中渐消因子根据量测新息递归更新,确保噪声突变时每个时刻的量测新息保持正交,从而充分利用量测信息,准确并且快速地跟踪突变噪声。针对渐消因子激增导致的滤波器发散问题,本文对渐消因子进行边界约束,提高算法的鲁棒性。仿真结果表明,在量测噪声协方差和过程噪声协方差随机突变的情况下,所提算法相较于PHD-SLAM 1.0和PHD-SLAM 2.0的定位和建图精度都得到了提高,同时保证了计算效率。