A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide i...A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide is calculated, then, the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated. Finally, the particle-in-cell simulation method is used to forecast its radiation performance. The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz. Therefore, it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.展开更多
抱杆是组立输电铁塔的特种起重设备.以最小质量为优化目标,杆件的截面尺寸、辅材连接方式以及摇臂节点坐标为优化变量,许用应力、位移和屈曲系数为约束条件,建立抱杆优化设计模型.提出一种改进的正余弦算法(improved sine cosine algori...抱杆是组立输电铁塔的特种起重设备.以最小质量为优化目标,杆件的截面尺寸、辅材连接方式以及摇臂节点坐标为优化变量,许用应力、位移和屈曲系数为约束条件,建立抱杆优化设计模型.提出一种改进的正余弦算法(improved sine cosine algorithm,ISCA),开展抱杆尺寸、形状和拓扑优化.引入Lévy飞行增强算法全局搜索能力,采用精英引导策略增强算法局部搜索能力,使用贪婪选择策略更新最优解.算例表明ISCA能够有效求解空间桁架结构的优化设计问题.展开更多
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61125103)the National Natural Science Foundation of China (Grant Nos. 60971038 and 60971031)the Fundamental Research Funds for the Central Universities,China (Grant No. ZYGX2009Z003)
文摘A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide is calculated, then, the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated. Finally, the particle-in-cell simulation method is used to forecast its radiation performance. The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz. Therefore, it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.
文摘抱杆是组立输电铁塔的特种起重设备.以最小质量为优化目标,杆件的截面尺寸、辅材连接方式以及摇臂节点坐标为优化变量,许用应力、位移和屈曲系数为约束条件,建立抱杆优化设计模型.提出一种改进的正余弦算法(improved sine cosine algorithm,ISCA),开展抱杆尺寸、形状和拓扑优化.引入Lévy飞行增强算法全局搜索能力,采用精英引导策略增强算法局部搜索能力,使用贪婪选择策略更新最优解.算例表明ISCA能够有效求解空间桁架结构的优化设计问题.