期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation
1
作者 Jing Pan Qi Wang +4 位作者 Shuaikang Gao Zhang Zhang Yu Xie Longteng Yu Lei Zhang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第10期45-53,共9页
Friction plays a critical role in dexterous robotic manipulation.However,realizing friction sensing remains a challenge due to the difficulty in designing sensing structures to decouple multi-axial forces.Inspired by ... Friction plays a critical role in dexterous robotic manipulation.However,realizing friction sensing remains a challenge due to the difficulty in designing sensing structures to decouple multi-axial forces.Inspired by the topological mechanics of knots,we construct optical fiber knot(OFN)sensors for slip detection and friction measurement.By introducing localized self-contacts along the fiber,the knot structure enables anisotropic responses to normal and frictional forces.By employing OFNs and a change point detection algorithm,we demonstrate adaptive robotic grasping of slipping cups.We further develop a robotic finger that can measure tri-axial forces via a centrosymmetric architecture composed of five OFNs.Such a tactile finger allows a robotic hand to manipulate human tools dexterously.This work could provide a straightforward and cost-effective strategy for promoting adaptive grasping,dexterous manipulation,and human-robot interaction with tactile sensing. 展开更多
关键词 robotic perception adaptive grasping slip detection force decoupling polymer optical fiber
下载PDF
Slip Detection of Robotic Hand Based on Vibration Power of Pressure Center
2
作者 Xiao-You Zhang Rong-Qiang Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期113-118,共6页
This paper proposes an incipient slip detection method for a robotic hand based on the vibration power of the pressure center. Firstly,an array-type pressure sensor was planted into the soft skin of the robotic hand t... This paper proposes an incipient slip detection method for a robotic hand based on the vibration power of the pressure center. Firstly,an array-type pressure sensor was planted into the soft skin of the robotic hand to measure the stick-slip vibration component of the pressure center generated in the process of slip of the grasped object. Secondly,the vibration power of the pressure center was calculated based on the measured stick-slip vibration component,and was used as a slip-detection function to judge the incipient slip of the grasped object. Finally,in order to use the same threshold value to judge incipient slip for different grasping forces,a weight coefficient was experimentally identified and used in the slip-detection function. The effectiveness of the proposed slip detection method was verified by experimental results,which showed that incipient slip can be detected by the proposed slip-detection function with the same threshold value for various materials,different slipping speeds grasping forces. In addition,multiple iterations of the experiment had demonstrated that the slip detection is repeatable. 展开更多
关键词 slip detection robotic hand pressure sensor pressure center
下载PDF
Combined GPS/GLONASS Data Processing 被引量:1
3
作者 ZHANG Yongjun LIU Jingnan 《Geo-Spatial Information Science》 2002年第4期32-36,共5页
To obtain the GLONASS satellite position at an epoch other than reference time,the satellite’s equation of motion has to be integrated with broadcasting ephemerides.The iterative detecting and repairing method of cyc... To obtain the GLONASS satellite position at an epoch other than reference time,the satellite’s equation of motion has to be integrated with broadcasting ephemerides.The iterative detecting and repairing method of cycle slips based on triple difference residuals for combined GPS/GLONASS positioning and the iterative ambiguity resolution approach suitable for combined post processing positioning are discussed systematically.Experiments show that millimeter accuracy can be achieved in short baselines with a few hours’ dual frequency or even single frequency GPS/GLONASS carrier phase observations,and the precision of dual frequency observations is distinctly higher than that of single frequency observations. 展开更多
关键词 GPS/GLONASS numerical integration cycle slips detection ambiguity resolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部