Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo...Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments.展开更多
To reveal the gravitational erosion process in the headstream area of Jiangjia Ravine, continuous observation was conduced duing the rainy season. The observation and research show that the change of water content of ...To reveal the gravitational erosion process in the headstream area of Jiangjia Ravine, continuous observation was conduced duing the rainy season. The observation and research show that the change of water content of the bank slope lags the precipitation process, the infiltration water concentrates mainly in the shallow layer of the bank slope, also the bank slope was unsaturated, the floods and debris flows in the gully down cut the gully bed, and scour the foot of the bank slope. These results in many collapses, which is the main type of gravitational erosion process, and it provides large amounts of loose solid materials for the eruption of debris flows.展开更多
Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope...Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope.展开更多
The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tilla...The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tillage by hoeing 15 times during a period with no rainfall in the two slope landscapes(a linear slope and complex slope) of the Yangtze Three Gorges reservoir areas,to examine the relationship between soil erosion rates and the variations in soil chemical properties and compare the effects of soil redistribution on SOC and nutrients between the linear and complex slopes.After the simulated tillage,notable changes in 137 Cs inventories of the soil occurred in the summit and toeslope positions on the linear slope,while there were significant changes in 137 Cs inventories at convex and concave positions on the complex slope.Soil profile disappeared at the summit slope boundary,with the exposure area of 16.0% and 7.6% of the experimental plot,respectively,for the linear and complex slopes due to no soil replacement.Soil organic C and nutrients were completely depleted with the disappearance of soil profiles at soil eroding zones,whereas a remarkable increase in SOC,total N and available nutrient concentrations of the post-tillage surface soil and a decrease in total nutrient concentrations(P and K) were found at depositional zones on the linear slope.For the complex slope,however,changes in SOC and nutrient concentrations of the post-tillage surface soil exhibited a patterndifferent from that on the linear slope,which showed a remarkable decrease in SOC and total nutrient concentrations but a slight increase in available nutrient concentrations after tillage in the toeslope position.Due to the gradual increase in soil depth from top to bottom of the slope,SOC and nutrient inventories in the soil profiles were significantly correlated with soil redistribution rates on both the linear and complex slopes.Tillage causes remarkable changes of soil chemical properties in the surface soil layer and soil profile,and increases SOC and nutrient inventories for the soil profile downslope in steeply sloping landscapes.展开更多
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding proce...Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.展开更多
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture c...In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.展开更多
Meadow degradation provides a major indication of increased soil erosion in alpine regions.Serious soil erosion is observed during the spring in particular because soil thawing coincides with the period of snowmelt an...Meadow degradation provides a major indication of increased soil erosion in alpine regions.Serious soil erosion is observed during the spring in particular because soil thawing coincides with the period of snowmelt and the meadow coverage is very low at this time.Studies relating to soil erosion caused by spring meltwater are,however,limited and controversial.Therefore,a field experimental study was conducted in a typical meadow in the Binggou watershed on the northern edge of the Tibetan Plateau to assess the impact of multiple factors on spring meltwater erosion on an alpine meadow slope.The multiple factors included three flow rates(1,2,and 3 L/min),four slope gradients(10°,15°,20°,and 25°),and three underlying surface conditions(meadow,disturbed meadow,and alluvial soil).An equal volume of concentrated meltwater flow was used in all experiments.The results showed that rapid melting at a high flow rate could accelerate soil erosion;as the flow rate increased from 1 to 3 L/min,the total surface runoff increased by a factor of 0.7 and the total sediment yield increased by more than 6-fold.The in-fluence of the slope gradient on the amount of runoff was positively linear and the influence was relatively low;when the slope increased from 10°to 25°,the total runoff only increased by 16%.However,the slope gradient had a strong impact on soil erosion.The total sediment yield doubled when the slope increased from 10°to 20°and then slightly decreased at 25°.The meadow could effectively reduce soil erosion,although when the meadow was disturbed,the total runoff increased by 60%and the sediment yield by a factor of 1.5.The total runoff from the alluvial soil doubled in comparison to the meadow,while the sediment yield increased nearly 7-fold.The findings of this study could be helpful to understand the characteristics and impact of multiple controlling factors of spring meltwater erosion.It also aims to provide a scientific basis for an improved management of alpine meadows as well as water and soil conservation activities in high-altitude cold regions.展开更多
The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mecha...The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mechanisms of overland flow. Four tillage practices, including cropland raking, artificial hoeing, artificial digging, and straight slopes, were considered based on the local agricultural conditions to simulate different values of soil surface roughness in the Loess Plateau. The objective of this study was to investigate the relationship between the soil surface roughness and hydraulic roughness coefficient on sloping farmland using artificial rainfall simulation. On a slope with a gradient of 10°, a significant logarithmic function was developed between the soil surface roughness and Manning's roughness coefficient, and an exponential function was derived to describe the relationship between the soil surface roughness and Reynolds number. On the slope with a gradient of 15°, a significant power function was developed to reflect the relationship between the soil surface roughness and Manning's roughness coefficient, and a linear function was derived to relate the soil surface roughness to the Reynolds number. These findings can provide alternative ways to estimate the hydraulic roughness coefficient for different types of soil surface roughness.展开更多
Morphometric analysis and flash floods assessment were conducted for the watersheds of Ras En Naqb escarpment, south Jordan. The study area comprises of twelve small watersheds occupying the faulted-erosional slopes, ...Morphometric analysis and flash floods assessment were conducted for the watersheds of Ras En Naqb escarpment, south Jordan. The study area comprises of twelve small watersheds occupying the faulted-erosional slopes, and the dip slopes. The drainage network shows that dendritic and sub-dendritic patterns dominated the dip slopes, whereas trellis pattern characterized the faulted-erosional slopes. Stream orders range from fourth to sixth order. The mean bifurcation ratios vary between 4.2 and 5.38 for the dip slope basins, and between 3.5 and 5.0 for the faulted-erosional slope watersheds, indicating a noticeable influence of structural disturbances (i.e., faulting and uplifting), and rejuvenation of drainage networks. All watersheds have short basin lengths, ranging from 23.8 km to 42.2 km for the dip slope basins, and between 15.3 km and 45.4 km for the faulted-erosional slope catchments. This is indicative of high flooding susceptibility associated with heavy rainstorms of short duration. The circularity ratios range from 0.177 to 0.704 which denote that the catchments are moderately circular on the faulted-erosional slopes, and to some extent elongated on the dip slopes. The length of overland flow values ranges from 0.854 to 0.924 for the dip slope catchments, whereas L<sub>O</sub> values for the faulted-erosional slopes vary from 0.793 to 0.945 denoting steep slopes and shorter paths on both dip slope and faulted-erosional slope watersheds. Values of stream frequency range from 1.509 to 1.692 for the dip slope, and from 1.688 to 2.0 for the faulted-erosional slope catchments. F<sub>S</sub> values are also indicative of slope steepness, low infiltration rate, and high flooding potential. The watersheds of the dip slopes show lower values of form factor varying from 0.079 to 0.364, indicating elongated shape and suggesting a relatively flat hydrograph peak for longer duration. Similarly, values of D<sub>d</sub> are high for catchments on the dip slope basins (1.709 - 1.85) and the faulted-erosional slope watersheds (1.587 - 2.0) indicating highly dissected topography, high surface runoff, low infiltration rate, and consequently high flooding potential. Furthermore, high relief values exist, ranging from 388 m to 714 m for the dip slope basins, and from 421 m to 846 m for the faulted-erosional slope catchments indicting high relief and steep slopes. Morphometric analysis, and flash flood assessment suggest that ten watersheds (83.3%) are categorized under high and intermediate flooding susceptibility, and the faulted-erosional slope catchments are more hazardous in terms of flooding. Thus the protection of Ma’an, El Jafr rural Bedouin settlements, and Amman-Aqaba highway from recurrent flooding is essential to ensure sustainable future development in Ras En Naqb-Ma’an area.展开更多
The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this s...The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this study, field tests were performed at different time scales, a control group was established, organic material–plant joint restoration technology was proposed as an optimized management measure, and the erosion control mechanism and restoration mode of organic material–plant joint restoration technology were analyzed. Based on the obtained experimental data, a Water Erosion Prediction Project(WEPP)-based hydraulic erosion model was constructed, sensitivity parameters were calibrated, and the soil erosion intensity and corresponding spatial distribution in the watershed of the study area were simulated via the geo-spatial interface for WEPP(GeoWEPP) after organic material–plant joint restoration technology was adopted to predict the effect of optimized management measures. The results showed that among the slopes with different restoration measures, organic material–plant joint restoration technology effectively controlled loess slope erosion, and the average erosion modulus of the organic material–grass and shrub transplantation slope reached only 23.37 t/km^(2), which is a decrease of 97.68% relative to the traditional grass–shrub protection slope. Moreover, the sand content of the joint restoration slope was reduced by 392.41 g/L relative to the bare slope, reaching only 0.29 g/L, and the runoff yield was reduced by 8.88 L/min. The GeoWEPP modeling results revealed that the total runoff yield and average annual erosion modulus of the watershed were lower after joint restoration than during the prerestoration period. Similarly, the total runoff yield of the watershed was 4.6%, the simulated 10-year average annual total sand production reached 2048.3 t,and the average annual erosion modulus was 582.75 t/km^(2), which is 52.15% lower than that under untreated conditions. This study provides a new strategy for solving soil erosion problems and restoring the ecology of slopes after managing ditches and implementing land projects.展开更多
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.41962015,52208348]the Jiangxi Provincial Natural Science Foundation[Grant No.20224BAB214064,20232BAB204083].
文摘Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments.
文摘To reveal the gravitational erosion process in the headstream area of Jiangjia Ravine, continuous observation was conduced duing the rainy season. The observation and research show that the change of water content of the bank slope lags the precipitation process, the infiltration water concentrates mainly in the shallow layer of the bank slope, also the bank slope was unsaturated, the floods and debris flows in the gully down cut the gully bed, and scour the foot of the bank slope. These results in many collapses, which is the main type of gravitational erosion process, and it provides large amounts of loose solid materials for the eruption of debris flows.
文摘Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope.
基金the Special Support Foundation of Institute of Mountain Hazards and Environment,CASthe National Natural Science Foundation of China (Grant No.40771027)
文摘The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tillage by hoeing 15 times during a period with no rainfall in the two slope landscapes(a linear slope and complex slope) of the Yangtze Three Gorges reservoir areas,to examine the relationship between soil erosion rates and the variations in soil chemical properties and compare the effects of soil redistribution on SOC and nutrients between the linear and complex slopes.After the simulated tillage,notable changes in 137 Cs inventories of the soil occurred in the summit and toeslope positions on the linear slope,while there were significant changes in 137 Cs inventories at convex and concave positions on the complex slope.Soil profile disappeared at the summit slope boundary,with the exposure area of 16.0% and 7.6% of the experimental plot,respectively,for the linear and complex slopes due to no soil replacement.Soil organic C and nutrients were completely depleted with the disappearance of soil profiles at soil eroding zones,whereas a remarkable increase in SOC,total N and available nutrient concentrations of the post-tillage surface soil and a decrease in total nutrient concentrations(P and K) were found at depositional zones on the linear slope.For the complex slope,however,changes in SOC and nutrient concentrations of the post-tillage surface soil exhibited a patterndifferent from that on the linear slope,which showed a remarkable decrease in SOC and total nutrient concentrations but a slight increase in available nutrient concentrations after tillage in the toeslope position.Due to the gradual increase in soil depth from top to bottom of the slope,SOC and nutrient inventories in the soil profiles were significantly correlated with soil redistribution rates on both the linear and complex slopes.Tillage causes remarkable changes of soil chemical properties in the surface soil layer and soil profile,and increases SOC and nutrient inventories for the soil profile downslope in steeply sloping landscapes.
基金Financial support for this research was provided by the National Natural Science Foundation of China (41401302)the Key Program of National Natural Science Foundation of China (41130744)+3 种基金National Natural Science Foundation of China (41271304),National Natural Science Foundation of China (41471229)Natural Science Foundation of Beijing Municipal of Education (025135303700/048)Beijing Youth Elite Project (043135336000/002)the Project of Research Base Construction of Beijing Municipal Education Commission,Key laboratory of Water Cycle and Related Land Surface Processes Foundation (201204)
文摘Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.
基金supported by Key Program of National Natural Science Foundation of China(Grant No. 41130744)China National Natural Science Foundation (Grant No. 40971165)State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau open Foundation(Grant No. 10501-1220)
文摘In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.
基金This study was financially supported by the National Natural Science Foundation of China(Grant 41571274)
文摘Meadow degradation provides a major indication of increased soil erosion in alpine regions.Serious soil erosion is observed during the spring in particular because soil thawing coincides with the period of snowmelt and the meadow coverage is very low at this time.Studies relating to soil erosion caused by spring meltwater are,however,limited and controversial.Therefore,a field experimental study was conducted in a typical meadow in the Binggou watershed on the northern edge of the Tibetan Plateau to assess the impact of multiple factors on spring meltwater erosion on an alpine meadow slope.The multiple factors included three flow rates(1,2,and 3 L/min),four slope gradients(10°,15°,20°,and 25°),and three underlying surface conditions(meadow,disturbed meadow,and alluvial soil).An equal volume of concentrated meltwater flow was used in all experiments.The results showed that rapid melting at a high flow rate could accelerate soil erosion;as the flow rate increased from 1 to 3 L/min,the total surface runoff increased by a factor of 0.7 and the total sediment yield increased by more than 6-fold.The in-fluence of the slope gradient on the amount of runoff was positively linear and the influence was relatively low;when the slope increased from 10°to 25°,the total runoff only increased by 16%.However,the slope gradient had a strong impact on soil erosion.The total sediment yield doubled when the slope increased from 10°to 20°and then slightly decreased at 25°.The meadow could effectively reduce soil erosion,although when the meadow was disturbed,the total runoff increased by 60%and the sediment yield by a factor of 1.5.The total runoff from the alluvial soil doubled in comparison to the meadow,while the sediment yield increased nearly 7-fold.The findings of this study could be helpful to understand the characteristics and impact of multiple controlling factors of spring meltwater erosion.It also aims to provide a scientific basis for an improved management of alpine meadows as well as water and soil conservation activities in high-altitude cold regions.
基金supported by the National Natural Science Foundation of China(Grant No40901138)the Project of the State Key Laboratory of Earth Surface Processes and Resource Ecology(Grant No 2008-KF-05)the Project of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(Grant No10501-283)
文摘The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mechanisms of overland flow. Four tillage practices, including cropland raking, artificial hoeing, artificial digging, and straight slopes, were considered based on the local agricultural conditions to simulate different values of soil surface roughness in the Loess Plateau. The objective of this study was to investigate the relationship between the soil surface roughness and hydraulic roughness coefficient on sloping farmland using artificial rainfall simulation. On a slope with a gradient of 10°, a significant logarithmic function was developed between the soil surface roughness and Manning's roughness coefficient, and an exponential function was derived to describe the relationship between the soil surface roughness and Reynolds number. On the slope with a gradient of 15°, a significant power function was developed to reflect the relationship between the soil surface roughness and Manning's roughness coefficient, and a linear function was derived to relate the soil surface roughness to the Reynolds number. These findings can provide alternative ways to estimate the hydraulic roughness coefficient for different types of soil surface roughness.
文摘Morphometric analysis and flash floods assessment were conducted for the watersheds of Ras En Naqb escarpment, south Jordan. The study area comprises of twelve small watersheds occupying the faulted-erosional slopes, and the dip slopes. The drainage network shows that dendritic and sub-dendritic patterns dominated the dip slopes, whereas trellis pattern characterized the faulted-erosional slopes. Stream orders range from fourth to sixth order. The mean bifurcation ratios vary between 4.2 and 5.38 for the dip slope basins, and between 3.5 and 5.0 for the faulted-erosional slope watersheds, indicating a noticeable influence of structural disturbances (i.e., faulting and uplifting), and rejuvenation of drainage networks. All watersheds have short basin lengths, ranging from 23.8 km to 42.2 km for the dip slope basins, and between 15.3 km and 45.4 km for the faulted-erosional slope catchments. This is indicative of high flooding susceptibility associated with heavy rainstorms of short duration. The circularity ratios range from 0.177 to 0.704 which denote that the catchments are moderately circular on the faulted-erosional slopes, and to some extent elongated on the dip slopes. The length of overland flow values ranges from 0.854 to 0.924 for the dip slope catchments, whereas L<sub>O</sub> values for the faulted-erosional slopes vary from 0.793 to 0.945 denoting steep slopes and shorter paths on both dip slope and faulted-erosional slope watersheds. Values of stream frequency range from 1.509 to 1.692 for the dip slope, and from 1.688 to 2.0 for the faulted-erosional slope catchments. F<sub>S</sub> values are also indicative of slope steepness, low infiltration rate, and high flooding potential. The watersheds of the dip slopes show lower values of form factor varying from 0.079 to 0.364, indicating elongated shape and suggesting a relatively flat hydrograph peak for longer duration. Similarly, values of D<sub>d</sub> are high for catchments on the dip slope basins (1.709 - 1.85) and the faulted-erosional slope watersheds (1.587 - 2.0) indicating highly dissected topography, high surface runoff, low infiltration rate, and consequently high flooding potential. Furthermore, high relief values exist, ranging from 388 m to 714 m for the dip slope basins, and from 421 m to 846 m for the faulted-erosional slope catchments indicting high relief and steep slopes. Morphometric analysis, and flash flood assessment suggest that ten watersheds (83.3%) are categorized under high and intermediate flooding susceptibility, and the faulted-erosional slope catchments are more hazardous in terms of flooding. Thus the protection of Ma’an, El Jafr rural Bedouin settlements, and Amman-Aqaba highway from recurrent flooding is essential to ensure sustainable future development in Ras En Naqb-Ma’an area.
基金National Natural Science Foundation of China,No.42107179, No.41702335The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project,No.SKLGP2021Z021, No.SKLGP2022Z005。
文摘The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this study, field tests were performed at different time scales, a control group was established, organic material–plant joint restoration technology was proposed as an optimized management measure, and the erosion control mechanism and restoration mode of organic material–plant joint restoration technology were analyzed. Based on the obtained experimental data, a Water Erosion Prediction Project(WEPP)-based hydraulic erosion model was constructed, sensitivity parameters were calibrated, and the soil erosion intensity and corresponding spatial distribution in the watershed of the study area were simulated via the geo-spatial interface for WEPP(GeoWEPP) after organic material–plant joint restoration technology was adopted to predict the effect of optimized management measures. The results showed that among the slopes with different restoration measures, organic material–plant joint restoration technology effectively controlled loess slope erosion, and the average erosion modulus of the organic material–grass and shrub transplantation slope reached only 23.37 t/km^(2), which is a decrease of 97.68% relative to the traditional grass–shrub protection slope. Moreover, the sand content of the joint restoration slope was reduced by 392.41 g/L relative to the bare slope, reaching only 0.29 g/L, and the runoff yield was reduced by 8.88 L/min. The GeoWEPP modeling results revealed that the total runoff yield and average annual erosion modulus of the watershed were lower after joint restoration than during the prerestoration period. Similarly, the total runoff yield of the watershed was 4.6%, the simulated 10-year average annual total sand production reached 2048.3 t,and the average annual erosion modulus was 582.75 t/km^(2), which is 52.15% lower than that under untreated conditions. This study provides a new strategy for solving soil erosion problems and restoring the ecology of slopes after managing ditches and implementing land projects.