Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the fl...Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the floating body's inner domain, an auxiliary equation is obtained by applying a Green function which satisfies the solid surface condition. Then, the auxiliary equation and the velocity potential equation are combined in the fluid domain to remove the solid angle coefficient and the singularity of the double layer potentials in the integral equation. Thus, a new velocity potential integral equation is obtained. The new equation is extended to the inner domain to reheve the irregular frequency effects; on the basis of the order analysis, the comparison is made about the contribution of all integral terms with the result in the second-order tow-frequency problem; the higher-order boundary element method based on NURBS is apphed to calculate the geometric position and velocity potentials; the slow drift motions are calculated by the spectrum analysis method. Removing the solid angle coefficient can apply NURBS technology to the hydrodynamic calculation of floating bodies with complex surfaces, and the extended boundary integral method can reduce the irregular frequency effects. Order analysis shows that free surface integral can be neglected, and the numerical results can also prove the correctness of order analysis. The results of second-order low-frequency forces and slow drift motions and the comparison with the results from references show that the application of the NURBS technology to the second-order low-frequency problem is of high efficiency and credible results.展开更多
A limit theorem which can simplify slow–fast dynamical systems driven by fractional Brownian motion with the Hurst parameter H inside the(1/2, 1) interval has been proved. The slow variables of the original system ...A limit theorem which can simplify slow–fast dynamical systems driven by fractional Brownian motion with the Hurst parameter H inside the(1/2, 1) interval has been proved. The slow variables of the original system can be approximated by the solution of the simplified equations in the sense of mean square. An example is presented to illustrate the applications of the limit theorem.展开更多
This paper studies chaotic motions in quasi-integrable Hamiltonian systems with slow-varying parameters under both harmonic and noise excitations. Based on the dynamic theory and some assumptions of excited noises, an...This paper studies chaotic motions in quasi-integrable Hamiltonian systems with slow-varying parameters under both harmonic and noise excitations. Based on the dynamic theory and some assumptions of excited noises, an extended form of the stochastic Melnikov method is presented. Using this extended method, the homoclinic bifurcations and chaotic behavior of a nonlinear Hamiltonian system with weak feed-back control under both harmonic and Gaussian white noise excitations are analyzed in detail. It is shown that the addition of stochastic excitations can make the parameter threshold value for the occurrence of chaotic motions vary in a wider region. Therefore, chaotic motions may arise easily in the system. By the Monte-Carlo method, the numerical results for the time-history and the maximum Lyapunov exponents of an example system are finally given to illustrate that the presented method is effective.展开更多
There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility t...There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.展开更多
文摘Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the floating body's inner domain, an auxiliary equation is obtained by applying a Green function which satisfies the solid surface condition. Then, the auxiliary equation and the velocity potential equation are combined in the fluid domain to remove the solid angle coefficient and the singularity of the double layer potentials in the integral equation. Thus, a new velocity potential integral equation is obtained. The new equation is extended to the inner domain to reheve the irregular frequency effects; on the basis of the order analysis, the comparison is made about the contribution of all integral terms with the result in the second-order tow-frequency problem; the higher-order boundary element method based on NURBS is apphed to calculate the geometric position and velocity potentials; the slow drift motions are calculated by the spectrum analysis method. Removing the solid angle coefficient can apply NURBS technology to the hydrodynamic calculation of floating bodies with complex surfaces, and the extended boundary integral method can reduce the irregular frequency effects. Order analysis shows that free surface integral can be neglected, and the numerical results can also prove the correctness of order analysis. The results of second-order low-frequency forces and slow drift motions and the comparison with the results from references show that the application of the NURBS technology to the second-order low-frequency problem is of high efficiency and credible results.
基金supported by the National Nature Science Foundation of China (11372247 and 11102157)Program for NCET, the Shaanxi Project for Young New Star in Science and TechnologyNPU Foundation for Fundamental Research and SRF for ROCS, SEM
文摘A limit theorem which can simplify slow–fast dynamical systems driven by fractional Brownian motion with the Hurst parameter H inside the(1/2, 1) interval has been proved. The slow variables of the original system can be approximated by the solution of the simplified equations in the sense of mean square. An example is presented to illustrate the applications of the limit theorem.
文摘This paper studies chaotic motions in quasi-integrable Hamiltonian systems with slow-varying parameters under both harmonic and noise excitations. Based on the dynamic theory and some assumptions of excited noises, an extended form of the stochastic Melnikov method is presented. Using this extended method, the homoclinic bifurcations and chaotic behavior of a nonlinear Hamiltonian system with weak feed-back control under both harmonic and Gaussian white noise excitations are analyzed in detail. It is shown that the addition of stochastic excitations can make the parameter threshold value for the occurrence of chaotic motions vary in a wider region. Therefore, chaotic motions may arise easily in the system. By the Monte-Carlo method, the numerical results for the time-history and the maximum Lyapunov exponents of an example system are finally given to illustrate that the presented method is effective.
文摘There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.