期刊文献+
共找到784篇文章
< 1 2 40 >
每页显示 20 50 100
Application of Smoothed Particle Hydrodynamics(SPH)for the Simulation of Flow-Like Landslides on 3D Terrains
1
作者 Binghui Cui Liaojun Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期357-376,共20页
Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for ... Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for risk assessment and mitigation design.The smoothed particle hydrodynamics(SPH)method has been successfully applied to the simulation of two-dimensional(2D)and three-dimensional(3D)flow-like landslides.However,the influence of boundary resistance on the whole process of landslide failure is rarely discussed.In this study,a boundary condition considering friction is proposed and integrated into the SPH method,and its accuracy is verified.Moreover,the Navier-Stokes equation combined with the non-Newtonian fluid rheologymodel was utilized to solve the dynamic behavior of the flow-like landslide.To verify its performance,the Shuicheng landslide event,which occurred in Guizhou,China,was taken as a case study.In the 2D simulation,a sensitivity analysis was conducted,and the results showed that the shearing strength parameters have more influence on the computation accuracy than the coefficient of viscosity.Afterwards,the dynamic characteristics of the landslide,such as the velocity and the impact area,were analyzed in the 3D simulation.The simulation results are in good agreement with the field investigations.The simulation results demonstrate that the SPH method performs well in reproducing the landslide process,and facilitates the analysis of landslide characteristics as well as the affected areas,which provides a scientific basis for conducting the risk assessment and disaster mitigation design. 展开更多
关键词 Flow-like landslides smoothed particle hydrodynamics non-Newtonian fluid boundary treatment
下载PDF
Improved Model for Soil as a Two-Phase Mixture Based on Smoothed Particle Hydrodynamics (SPH)
2
作者 Kousuke Nakamura Tomoaki Satomi Hiroshi Takahashi 《Journal of Applied Mathematics and Physics》 2014年第12期1053-1060,共8页
It is desired to resolve soil contamination with reduced costs. “Insoluble treatment” is a soil improvement method for heavy metal containing soil, which uses soil mixers to mix soil and soil improvement liquid agen... It is desired to resolve soil contamination with reduced costs. “Insoluble treatment” is a soil improvement method for heavy metal containing soil, which uses soil mixers to mix soil and soil improvement liquid agents. To reduce the costs of this method, soil mixers have to be optimized. However, it is not achieved due to the lack of theoretical knowledge on mixing solid with liquid. Therefore, a numerical model to simulate the dynamic behavior of solid and liquid is on the development in this study using Smoothed Particle Hydrodynamics (SPH) method. To validate the numerical model, several experiments were carried out and numerically reproduced. The comparisons of the results showed that the numerical model replicated a liquid flow with an error rate of 2.1% and a seepage flow with an error rate up to 26.1%. Especially, the water distribution in the soil pores was highly improved with absolute gaps in volumetric water content up to 4.4% in the porosity range of 10% - 90%. For the water absorption into dry sand, the simulation result became more realistic by concerning soil suction. 展开更多
关键词 SOIL Improvement Water Absorption Test Saturated and UNSATURATED SOIL smoothed particle hydrodynamics
下载PDF
基于Smoothed Particle Hydrodynamics方法的实时流体模拟 被引量:1
3
作者 胡甫强 毕学工 《计算机与现代化》 2009年第3期28-30,34,共4页
提出基于物理的、实时的技术模拟水体,根据Smoothed Particle Hydrodynamics方法求解流体动力学的Navier-Stokes方程,并运用Marching Cubes体绘制算法重建流体表面。实验表明基于粒子的方法能模拟流体所特有的飞溅、漩涡等现象,Marching... 提出基于物理的、实时的技术模拟水体,根据Smoothed Particle Hydrodynamics方法求解流体动力学的Navier-Stokes方程,并运用Marching Cubes体绘制算法重建流体表面。实验表明基于粒子的方法能模拟流体所特有的飞溅、漩涡等现象,Marching Cubes在表面重建的高效性使模拟达到实时、交互的应用。 展开更多
关键词 NAVIER-STOKES 光滑粒子流体动力学方法 MARCHING CUBES 实时
下载PDF
Numerical Investigation of Penetration in Ceramic/Aluminum Targets Using Smoothed Particle Hydrodynamics Method and Presenting a Modified Analytical Model 被引量:8
4
作者 Ehsan Hedayati Mohammad Vahedi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2017年第3期295-323,共29页
Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets.In the present research,a modified model based on radius of ceramic cone was presented for... Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets.In the present research,a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets.In order to investigate and evaluate accuracy of the presented analytic model,obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results.The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics(SPH)implemented utilizing ABAQUS Software.Results indicated that,with increasing initial velocity and ceramic thickness and decreasing support layer thickness,the radius of ceramic cone decreases;this ends up increasing residual velocity of the projectile and penetration time and extending the area across which the pressure is distributed.These findings indicate enhanced levels of target energy absorption and the required energy for bending and tensioning the target.As such,it can be observed that,at the same thickness and areal density,the ceramic target has its efficiency enhanced with increasing ceramic thickness and decreasing the support layer thickness.Finally,the results revealed that the associated data with SPH confirm the modified analytic model at higher accuracy than the Florence’s analytic model. 展开更多
关键词 smoothed particle hydrodynamics Florence’s ANALYTIC MODEL MODIFIED analytical MODEL energy absorption ABAQUS PENETRATION
下载PDF
Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder 被引量:2
5
作者 Maziar Gholami Korzani Sergio A. Galindo-Torres +1 位作者 Alexander Scheuermann David J. Williams 《Water Science and Engineering》 EI CAS CSCD 2017年第2期143-153,共11页
Simulations of two-dimensional(2D) flow past a circular cylinder with the smoothed particle hydrodynamics(SPH) method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a vi... Simulations of two-dimensional(2D) flow past a circular cylinder with the smoothed particle hydrodynamics(SPH) method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a viscous liquid with weak compressibility. Boundary conditions,such as a no-slip solid wall, inflow and outflow, and periodic boundaries, were employed to resemble the physical problem. A sensitivity analysis, which has been rarely addressed in previous studies, was conducted on several SPH parameters. Hence, the effects of distinct parameters, such as the kernel choices and the domain dimensions, were investigated with the goal of obtaining highly accurate results. A range of Reynolds numbers(1-500) was simulated, and the results were compared with existing experimental data. It was observed that the domain dimensions and the resolution of SPH particles, in comparison to the obstacle size, affected the obtained drag coefficient significantly. Other parameters, such as the background pressure, influenced the transient condition, but did not influence the steady state at which the drag coefficient was determined. 展开更多
关键词 smoothed particle hydrodynamics Drag COEFFICIENT REYNOLDS number Sensitivity analysis VISCOUS flow
下载PDF
Numerical Simulation of Bubble Formation at a Single Orifice in Gas-fluidized Beds with Smoothed Particle Hydrodynamics and Finite Volume Coupled Method 被引量:2
6
作者 F.Z.Chen H.F.Qiang W.R.Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第1期41-68,共28页
A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynami... A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynamics,whereas gas phase is discretized by finite volume method.Drag force,gas pressure gradient,and volume fraction are used to couple the two methods.The effect of injection velocities,particle sizes,and particle densities on bubble growth is analyzed using the coupled method.The simulation results,obtained for two-dimensional geometries,include the shape and diameter size of a bubble as a function of time;such results are compared with experimental data,previous numerical results,and other approximate model predictions reported in the literature.Moreover,the flow profiles of gas and particle phases and the temperature distribution by the heat transfer model around the forming bubble are also discussed.All results show that the coupled method efficiently describes of the bubble formation in fluidized beds.The proposed method is applicable for solving gas–solid two-phase flow in fluidization. 展开更多
关键词 coupled method smoothed particle hydrodynamics FINITE volumemethod BUBBLE formation heat transfer FLUIDIZATION
下载PDF
A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/neuro-fuzzy computations and ultrasonic testing 被引量:2
7
作者 A.R.Eivani H.Vafaeenezhad +1 位作者 H.R.Jafarian J.Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1311-1335,共25页
The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a ... The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy. 展开更多
关键词 Friction stir welding(FSW) smoothed particle hydrodynamics(sph) Adaptive neuro-fuzzy inference system(ANFIS) Ultrasonic Residual stress
下载PDF
Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis 被引量:1
8
作者 Yanyao Bao Ling Li +2 位作者 Luming Shen Chengwang Lei Yixiang Gan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期472-485,共14页
Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SP... Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SPH) model is employed to simulate surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified by introducing a newly developed viscous force formulation at the liquid-solid interface to reproduce the rate-dependent behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with different magnitude on the contact angle dynamics is examined by empirical power-law correlations;the derived constants suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic multiphase flow simulations under dynamic conditions. 展开更多
关键词 smoothed particle hydrodynamics Contact ANGLE dynamics CAPILLARY number INTERFACIAL VISCOUS force
下载PDF
Quasi-static simulation of droplet morphologies using a smoothed particle hydrodynamics multiphase model 被引量:1
9
作者 Xiangwei Dong Jianlin Liu +1 位作者 Sai Liu Zengliang Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第1期32-44,I0002,共14页
Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is p... Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is proposed, combined with a robust smoothed particle hydrodynamics multiphase algorithm (Zhang 2015). The first step of the method is the creation of the virtual liquid-gas interface across the solid surface by means of dummy particles, thus the calculated surface tension near the triple point serves to automatically modulate the dynarnic contact line towards the equilibrium state. We simulate the evolution process of initially square liquid lumps on fiat and curved surfaces. The predictions of droplet profiles are in good agreement with the analytical solutions provided that the macroscopic contact angle is accurately implemented. Compared to the normal correction method, the present method is straightforward without the need to manually alter the normal vectors. This study presents a robust algorithm capable of capturing the physics of the static welling. It may hold great potentials in bio-inspired superhydrophobic surfaces, oil displacement, microfluidics, ore floatation, etc. 展开更多
关键词 smoothed particle hydrodynamics Virtual interface method MULTIPHASE flow MACROSCOPIC contact angle DROPLET morphology Curved surfaces
下载PDF
Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows 被引量:1
10
作者 Yrj Jun Huang Ole Jφrgen Nydal 《Theoretical & Applied Mechanics Letters》 CAS 2012年第1期55-58,共4页
Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. ... Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity. 展开更多
关键词 discrete-element method smoothed particle hydrodynamics liquid-solid flows lid-driven cavity
下载PDF
Hydrodynamic Coefficients for a 3-D Uniform Flexible Barge UsingWeakly Compressible Smoothed Particle Hydrodynamics 被引量:4
11
作者 Muhammad Zahir Ramli P.Temarel M.Tan 《Journal of Marine Science and Application》 CSCD 2018年第3期330-340,共11页
The numerical modelling of the interactions between water waves and floating structures is significant for different areas of the marine sector, especially seakeeping and prediction of wave-induced loads. Seakeeping a... The numerical modelling of the interactions between water waves and floating structures is significant for different areas of the marine sector, especially seakeeping and prediction of wave-induced loads. Seakeeping analysis involving severe flow fluctuations is still quite challenging even for the conventional RANS method. Particle method has been viewed as alternative for such analysis especially those involving deformable boundary, wave breaking and fluid fragmentation around hull shapes. In this paper, the weakly compressible smoothed particle hydrodynamics(WCSPH), a fully Lagrangian particle method, is applied to simulate the symmetric radiation problem for a stationary barge treated as a flexible body. This is carried out by imposing prescribed forced simple harmonic oscillations in heave, pitch and the two-and three-node distortion modes. The resultant,radiation force predictions, namely added mass and fluid damping coefficients, are compared with results from 3-D potential flow boundary element method and 3-D RANS CFD predictions, in order to verify the adopted modelling techniques for WCSPH.WCSPH were found to be in agreement with most results and could predict the fluid actions equally well in most cases. 展开更多
关键词 WEAKLY COMPRESSIBLE Fluid structure interaction smoothedparticlehydrodynamics SEAKEEPING HYDROELASTICITY Radiation
下载PDF
Numerical analysis of submarine landslides using a smoothed particle hydrodynamics depth integral model 被引量:1
12
作者 WANG Zhongtao LI Xinzhong +1 位作者 LIU Peng TAO Yanqi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期134-140,共7页
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current... Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection. 展开更多
关键词 sliding velocity runout distance smoothed particle hydrodynamics depth integral method frictional rheological model erosion effect
下载PDF
Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems 被引量:1
13
作者 雷娟棉 彭雪莹 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期22-34,共13页
Kernel gradient free-smoothed particle hydrodynamics (KGF-SPH) is a modified smoothed particle hydrodynamics (SPH) method which has higher precision than the conventional SPH. However, the Laplacian in KGF-SPH is ... Kernel gradient free-smoothed particle hydrodynamics (KGF-SPH) is a modified smoothed particle hydrodynamics (SPH) method which has higher precision than the conventional SPH. However, the Laplacian in KGF-SPH is approximated by the two-pass model which increases computational cost. A new kind of discretization scheme for the Laplacian is proposed in this paper, then a method with higher precision and better stability, called Improved KGF-SPH, is developed by modifying KGF-SPH with this new Laplacian model. One-dimensional (1D) and two-dimensional (2D) heat conduction problems are used to test the precision and stability of the Improved KGF-SPH. The numerical results demonstrate that the Improved KGF-SPH is more accurate than SPH, and stabler than KGF-SPH. Natural convection in a closed square cavity at different Rayleigh numbers are modeled by the Improved KGF-SPH with shifting particle position, and the Improved KGF-SPH results are presented in comparison with those of SPH and finite volume method (FVM). The numerical results demonstrate that the Improved KGF-SPH is a more accurate method to study and model the heat transfer problems. 展开更多
关键词 kernel gradient free-smoothed particle hydrodynamics heat conduction natural convection accu-racy and stability
下载PDF
Real-time Simulation of Gas Based on Smoothed Particle Hydrodynamics 被引量:1
14
作者 ZHU Xiao-lin FAN Cheng-kai LIU Yang-yang 《Computer Aided Drafting,Design and Manufacturing》 2015年第1期68-73,共6页
This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, i... This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, it is not found to apply to gas simulation, since those methods based on SPH can't be used in real-time simulation due to their enormous particles and huge computation. This paper proposes a method for gas simulation based on SPH with a small number of particles. Firstly, the method computes the position and density of each particle in each point-in-time, and outlines the shape of the simulated gas based on those particles. Secondly the method uses the grid technique to refine the shape with the diffusion of particle's density under the control of grid, and get more lifelike simulation result. Each grid will be assigned density according to the particles in it. The density determines the final appearance of the grid. For ensuring the natural transition of the color between adjacent grids, we give a diffuse process of density between these grids and assign appropriate values to vertexes of these grids. The experimental results show that the proposed method can give better gas simulation and meet the request of real-time. 展开更多
关键词 gas simulation smoothed particles hydrodynamics (sph 3D grid REAL-TIME
下载PDF
An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms
15
作者 Fabian Spreng Peter Eberhard Florian Fleissner 《Theoretical & Applied Mechanics Letters》 CAS 2013年第1期44-50,共7页
The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. contain... The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305] 展开更多
关键词 multibody dynamics smoothed particle hydrodynamics CO-SIMULATION MACHINING contact modeling
下载PDF
A Simplified Approach of Open Boundary Conditions for the Smoothed Particle Hydrodynamics Method
16
作者 Thanh Tien Bui Yoshihisa Fujita Susumu Nakata 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期425-442,共18页
In this paper,we propose a simplified approach of open boundary conditions for particle-based fluid simulations using the weakly compressible smoothed-particle hydrodynamics(SPH)method.In this scheme,the values of the... In this paper,we propose a simplified approach of open boundary conditions for particle-based fluid simulations using the weakly compressible smoothed-particle hydrodynamics(SPH)method.In this scheme,the values of the inflow/outflow particles are calculated as fluid particles or imposed desired values to ensure the appropriate evolution of the flow field instead of using a renormalization process involving the fluid particles.We concentrate on handling the generation of new inflow particles using several simple approaches that contribute to the flow field stability.The advantages of theδ^(+).-SPH scheme,specifically the particle shifting technique,were successfully applied to correct the position,velocity,and pressure terms of the particles.Therefore,unexpected errors were removed and tensile instabilities of the particles were prevented.The proposed technique is validated for several benchmark test cases,and the tests show that the results match the reference solutions well.A viscous open-channel flow is used to demonstrate the stability of the flow field during the computational time.Based on this stability,we compress the computational domain to a lower resolution in a second test case while preserving the accuracy of the simulation.Flow over a backward-facing step is used to highlight the challenges of inflow boundary conditions with prescribed or non-prescribed values.The developed technique is well suited to the wall boundaries and the evolution of the flow field.The results demonstrate the robustness and versatility of the proposed technique for a variety of simulations. 展开更多
关键词 Fluid simulation smoothed particle hydrodynamics open boundaries
下载PDF
Computational Study on Melting Process Using Smoothed Particle Hydrodynamics
17
作者   Suprijadi +1 位作者 Ferry Faizal Reza Rendian Septiawan 《Journal of Modern Physics》 2014年第3期112-116,共5页
Recently, smoothed particle hydrodynamics (SPH) method has become popular in computational fluid dynamic and heat transfer simulation. The simplicity offered by this method made some complex system in physics such as ... Recently, smoothed particle hydrodynamics (SPH) method has become popular in computational fluid dynamic and heat transfer simulation. The simplicity offered by this method made some complex system in physics such as moving interface in multiphase flow, heat conductivity jumping in multiple material boundaries and many geometrical difficulties become relative easy to calculate. We will treat a relative easy example of melting process to test the method in solving fluid motion equation coupled by heat transfer process. The main heat transfer processes are caused by solid-liquid (medium to medium) heat diffusion and convection. System interaction with ambient temperature can be modeled by gas surrounding fluid-solid system. For the ambient temperature, we proposed surface particle heat transfer governed by convectional heat flux. Using local particle number density value as surface detection method, we applied cooling and heating to surface particle on the melting ice cube and water system. The simulation result is also verified by experiment. 展开更多
关键词 FLUID DYNAMIC HEAT TRANSFER smoothed particle hydrodynamics
下载PDF
A Method to Improve First Order Approximation of Smoothed Particle Hydrodynamics
18
作者 陈思 周岱 +1 位作者 包艳 董石麟 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第2期136-138,共3页
Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to i... Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to improve accuracy of SPH approximation by the lemma proved.The lemma describes the relationship of functions and their SPH approximation.Finally,the error comparison of SPH method with or without our improvement was carried out. 展开更多
关键词 大跨度钢结构 水动力学 桥梁 建筑设计
下载PDF
Modelling Dam Break Evolution over a Wet Bed with Smoothed Particle Hydrodynamics: A Parameter Study
19
作者 Patrick Jonsson Par Jonsen +2 位作者 Patrik Andreasson T.Staffan Lundstrom J.Gunnar I.Hellstrom 《Engineering(科研)》 2015年第5期248-260,共13页
When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when perform... When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when performing simulations. Today, there is a lack in the possibility to model such phenomenon with traditional methods. Hence, this work focuses on a parameter study for one alternative simulation tool available, namely the meshfree, Lagrangian particle method Smoothed Particle Hydrodynamics (SPH). The parameter study includes the choice of equation-of-state (EOS), the artificial viscosity constants, using a dynamic versus a static smoothing length, SPH particle spatial resolution and the finite element method (FEM) mesh scaling of the boundaries. The two dimensional SPHERIC Benchmark test case of dam break evolution over a wet bed was used for comparison and validation. The numerical results generally showed a tendency of the wave front to be ahead of the experimental results, i.e. to have a greater wave front velocity. The choice of EOS, FEM mesh scaling as well as using a dynamic or a static smoothing length showed little or no significant effect on the outcome, though the SPH particle resolution and the choice of artificial viscosity constants had a major impact. A high particle resolution increased the number of flow features resolved for both choices of artificial viscosity constants, but at the expense of increasing the mean error. Furthermore, setting the artificial viscosity constants equal to unity for the coarser cases resulted in a highly viscous and unphysical solution, and thus the relation between the artificial viscosity constants and the particle resolution and its impact on the behavior of the fluid needed to be further investigated. 展开更多
关键词 sph Dam Break smoothed particle hydrodynamics
下载PDF
Application of Smooth Particle Hydrodynamics Method for Modelling Blood Flow with Thrombus Formation 被引量:1
20
作者 M.Al-Saad C.A.Suarez +2 位作者 A.Obeidat S.P.A.Bordas S.Kulasegaram 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期831-862,共32页
Thrombosis plays a crucial role in atherosclerosis or in haemostasis when a blood vessel is injured.This article focuses on using a meshless particle-based Lagrangian numerical technique,the smoothed particles hydrody... Thrombosis plays a crucial role in atherosclerosis or in haemostasis when a blood vessel is injured.This article focuses on using a meshless particle-based Lagrangian numerical technique,the smoothed particles hydrodynamic(SPH)method,to study the flow behaviour of blood and to explore the flow parameters that induce formation of a thrombus in a blood vessel.Due to its simplicity and effectiveness,the SPH method is employed here to simulate the process of thrombogenesis and to study the effect of various blood flow parameters.In the present SPH simulation,blood is modelled by two sets of particles that have the characteristics of plasma and of platelet,respectively.To simulate coagulation of platelets which leads to a thrombus,the so-called adhesion and aggregation mechanisms of the platelets during this process are modelled by an inter-particle force model.The transport of platelets in the flowing blood,platelet adhesion and aggregation processes are coupled with viscous blood flow for various low Reynolds number scenarios.The numerical results are compared with the experimental observations and a good agreement is found between the simulated and experimental results. 展开更多
关键词 smooth particle hydrodynamics blood flow THROMBUS ARTERIES platelets.
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部