Ice and snow chemistry of alpine glaciers is crucial for the research of regional atmospheric environment change. Fresh snow samples were weekly collected from Urumqi Glacier No.1 in the Tianshan Mountains, Xin- jiang...Ice and snow chemistry of alpine glaciers is crucial for the research of regional atmospheric environment change. Fresh snow samples were weekly collected from Urumqi Glacier No.1 in the Tianshan Mountains, Xin- jiang, China, and the chemical characteristics and seasonal variations of major ions, mineral dust, δ18O and trace metals were measured. Results show that the concentrations of major ions in the snow are Ca2+ > SO42-> NH4+ > NO3-> Cl-> Na+ > Mg2+ > K+, in which Ca2+ is the dominant cation, and SO42-is the dominant anion. All major ions have close positive correlations with each other except NO3-. δ18O shows positive correlation with air temperature change during the study period. Mineral dust particle and major ionic concentrations in fresh snow have obvious seasonal change, with high concentration in spring but low concentration in summer and autumn, which indicates that the chemical mass input from Asian dust activity to snow is very significant. Temporal changes of trace metals in fresh snow, e.g., Cd, Pb, Zn, Al, Fe, have shown that human-induced pollution of central Asian region also has large contribution to the snow chemistry on alpine glaciers of the Tianshan Mountains.展开更多
Snow chemistry on the glaciers of alpine regions is a good indicator of atmospheric environmental change.We examine snow chemistry in three snowpits at different altitudes on the Haxilegen Glacier No.51,in the Kuitun ...Snow chemistry on the glaciers of alpine regions is a good indicator of atmospheric environmental change.We examine snow chemistry in three snowpits at different altitudes on the Haxilegen Glacier No.51,in the Kuitun River source,Tian Shan,China,during July-September 2004 to 2007.We use correlation analysis,factor analysis and sea-salt tracing methods to examine the characteristics and sources of major ions and mineral dust particles in the snow.Results show that mineral dust particles and major ions in the snow pits vary seasonally.During the Asian dust period in springtime,the concentration of mineral dust particles and major ions deposited in snow is high,while the concentration is relatively low during the non-dust period of summer and autumn.This may be caused by dust storm activity in central Asia.The order of major ionic concentrations in the snow packs was determined to be Ca2+ > SO42-> NH4+ > NO3-> Cl-> Na+ > Mg2+ > K+.Ca2+ was the dominant cation;SO42- was the dominant anion.We find,with the exception of NO3-,that the variabilities of ionic concentrations are highly correlated.Results show that the glacier region was significantly affected by dust activity and anthropogenic source.The major ions,especially Na+,originate from dust sources of central Asia and from the Ocean,transported by the westerly winds.展开更多
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB951003)Knowledge Innovation Programs of the Chinese Academy of Sciences(No.KZCXZ-YW-127)National Natural Science Foundation of China(No.40631001,40571033,40701034,40371028,J0630966,40701035)
文摘Ice and snow chemistry of alpine glaciers is crucial for the research of regional atmospheric environment change. Fresh snow samples were weekly collected from Urumqi Glacier No.1 in the Tianshan Mountains, Xin- jiang, China, and the chemical characteristics and seasonal variations of major ions, mineral dust, δ18O and trace metals were measured. Results show that the concentrations of major ions in the snow are Ca2+ > SO42-> NH4+ > NO3-> Cl-> Na+ > Mg2+ > K+, in which Ca2+ is the dominant cation, and SO42-is the dominant anion. All major ions have close positive correlations with each other except NO3-. δ18O shows positive correlation with air temperature change during the study period. Mineral dust particle and major ionic concentrations in fresh snow have obvious seasonal change, with high concentration in spring but low concentration in summer and autumn, which indicates that the chemical mass input from Asian dust activity to snow is very significant. Temporal changes of trace metals in fresh snow, e.g., Cd, Pb, Zn, Al, Fe, have shown that human-induced pollution of central Asian region also has large contribution to the snow chemistry on alpine glaciers of the Tianshan Mountains.
基金supported by the National Basic Research Program (973) of China (Grant No.2010CB951003)Knowledge Innovation Programs of Chinese Academy of Science (Grant No.KZCXZ-YW-127)National Natural Science Foundation of China (Grant No. 91025012,40631001,40701034,40701035,1141001040)
文摘Snow chemistry on the glaciers of alpine regions is a good indicator of atmospheric environmental change.We examine snow chemistry in three snowpits at different altitudes on the Haxilegen Glacier No.51,in the Kuitun River source,Tian Shan,China,during July-September 2004 to 2007.We use correlation analysis,factor analysis and sea-salt tracing methods to examine the characteristics and sources of major ions and mineral dust particles in the snow.Results show that mineral dust particles and major ions in the snow pits vary seasonally.During the Asian dust period in springtime,the concentration of mineral dust particles and major ions deposited in snow is high,while the concentration is relatively low during the non-dust period of summer and autumn.This may be caused by dust storm activity in central Asia.The order of major ionic concentrations in the snow packs was determined to be Ca2+ > SO42-> NH4+ > NO3-> Cl-> Na+ > Mg2+ > K+.Ca2+ was the dominant cation;SO42- was the dominant anion.We find,with the exception of NO3-,that the variabilities of ionic concentrations are highly correlated.Results show that the glacier region was significantly affected by dust activity and anthropogenic source.The major ions,especially Na+,originate from dust sources of central Asia and from the Ocean,transported by the westerly winds.