The paper respectively adopted physio-chemical properties of every soil stratum from 2473 soil profiles of the second national soil survey. The corresponding carbon content of soils is estimated by utilizing conversio...The paper respectively adopted physio-chemical properties of every soil stratum from 2473 soil profiles of the second national soil survey. The corresponding carbon content of soils is estimated by utilizing conversion coefficient 0.58. In the second soil survey, the total amount of soil organic carbon is about 924.18xl08t and carbon density is about 10.53 kgC/m2 in China according to the area of 877.63x106hm2 surveyed throughout the country. The spatial distribution characteristics of soil organic carbon in China is that the carbon storage increases when latitude increases in eastern China and the carbon storage decreases when longitude reduces in northern China. A transitional zone with great variation in carbon storage exists. Moreover, there is an increasing tendency of carbon density with decrease of latitude in western China. Soil circle is of great significance to global change, but with substantial difference in soil spatial distribution throughout the country. Because the structure of soil is inhomogeneous, it could bring some mistakes in estimating soil carbon reservoirs. It is necessary to farther resolve soil respiration and organic matter conversion and other questions by developing uniform and normal methods of measurement and sampling.展开更多
To reveal the influencing factors of soil organic carbon( SOC) density in 0-30 cm soil layer of Lanlingxi watershed in Three Gorges Reservoir Area,build the regression equation for soil organic carbon density and adju...To reveal the influencing factors of soil organic carbon( SOC) density in 0-30 cm soil layer of Lanlingxi watershed in Three Gorges Reservoir Area,build the regression equation for soil organic carbon density and adjust carbon sink strategy in this region,soil samples of top soil profile( 0-30 cm) in five land use types were selected by the typical method. The SOC density of top soil profile( 0-30 cm) and other environmental factors,such as elevation,slope and aspect and soil properties in five land use types,including grassland,scrubland,woodland,land for tea plantation and farmland in the watershed was investigated. The relationship of SOC density with physical properties of soil was also examined. The SOC density of the above five land use types averaged 7. 55,3. 83,6. 04,10. 24,2. 83 kg·m^(-2),respectively. There was a significant difference in the SOC density( p < 0. 01); SOC density was significantly positively correlated with organic matter content( R= 0. 942,p < 0. 01),clay mass percentage( R = 0. 898,p < 0. 01),total nitrogen( R = 0. 863,p < 0. 01),elevation( R = 0. 599,p < 0. 01); SOC density was significantly negatively correlated with sand content( R =-0. 932,p < 0. 01) and slope( R =-0. 407,p < 0. 05); and the correlation between SOC density and soil p H,total phosphorus or total potassium was not obvious. Multiple correlation coefficient R = 0. 986( R > 0. 8,highly correlated) between SOC density and environmental factors was greater than the correlation coefficient between any one independent variable and dependent variable,which fully proved the combined effect of environmental factors on SOC density.展开更多
In this study, by analyzing CH4 concentration and 613CCH4 in soil-gas profiles, the potentials of CH4 gas transfer from ground to atmosphere were studied at four representative sectors in the Yakela condensed gas fiel...In this study, by analyzing CH4 concentration and 613CCH4 in soil-gas profiles, the potentials of CH4 gas transfer from ground to atmosphere were studied at four representative sectors in the Yakela condensed gas field in the Tarim Basin, Xinjiang, China. These are: 1) the oil-gas interface sector, 2) fault sector, 3) oil-water interface sector, 4) an external area. Variation in CH4 in soil-gas profiles showed that CH4 microseepage resulted from the migration of subsurface hydrocarbon from deep-buried reservoirs to the earth's surface. It was found that CH4 from deep-buried reservoirs could migrate upwards to the surface through faults, fissures and permeable rocks, during which some CH4 was oxidized and the unoxidized methane remained in the soil or was emitted into the atmosphere. The lowest level of CH4 at the soil-gas profile was found at the CH4 gas-phase equilibrium point at which the CH4 migration upwards from deep-buried reservoirs and the CH4 diffusion downwards from the atmosphere met. The 613CcH4 and ethane, propane in soil gas exhibited thermogenic characteristics, suggesting the occurrence of CH4 microseepage from deep-buried reservoirs. A linear correlation analysis between CH4 concentrations in soil gas and temperature, moisture, pH, Eh, Ec and particle size of soil indicated that both soil Eh and soil temperature could affect CH4 concentration in soil gas while soil pH could indirectly influence soil methanotrophic oxidation via impacting soil Eh.展开更多
探知全球草地生态系统的土壤有机碳储量是调控全球陆地碳循环过程的必要环节和最大难题之一。本文回顾了草地生态系统土壤有机碳储量的研究进展,分析了现有的草地土壤有机碳模拟技术——草地土壤有机碳模型的主要技术特征,就模型的基础...探知全球草地生态系统的土壤有机碳储量是调控全球陆地碳循环过程的必要环节和最大难题之一。本文回顾了草地生态系统土壤有机碳储量的研究进展,分析了现有的草地土壤有机碳模拟技术——草地土壤有机碳模型的主要技术特征,就模型的基础数据、模型的结构和模型内的函数参数等三方面,讨论了现存草地土壤有机碳模拟技术的缺陷,提出样地清查、遥感分析和模型模拟方法的综合运用将是解决这一问题的根本途径。最后,提出了一种基于草地综合顺序分类系统(comprehensive sequential classification system of grassland,CSCS)的草地土壤有机碳储量分类指数模型的构架。将样地清查、基于CSCS的草地土壤有机碳分类指数模型与遥感的高时空分辨率特征三者耦合起来,分析不同草地类型、气候区划等生态条件下的草地土壤有机碳特征,以求提高草地土壤有机碳估算结果的准确性。此外,草地生态系统土壤的碳汇效应等生态功能与放牧利用不存在绝对对立关系,实现放牧的现代化转型是以对草地土壤有机碳储量精准估算为前提的。展开更多
Through comparing the concentration and inventory of soil organic carbon (SOC) and its distribution in the soil profiles under several reafforestation patterns, this paper studied the effect of different reafforestati...Through comparing the concentration and inventory of soil organic carbon (SOC) and its distribution in the soil profiles under several reafforestation patterns, this paper studied the effect of different reafforestation patterns on SOC in the 0~60 cm soil layer located in Lanlingxi drainage area of Zigui county, the three gorges reservoir area. The results showed: In five years after the beginning of the project of Grain for Green, the concentration and inventory of SOC in the 0~30 cm soil layer under most reafforestation patterns were higher than those under contrast 2 (cropland) conditions, while the concentration and inventory of SOC in the 0~60 cm soil layer did not change or even decreased in some cases. The concentration and inventory of SOC and the decreasing magnitude of SOC with the soil profile depth under all the studied reafforestation patterns were lower than those under contrast 1 (shrubbery land) conditions, which received the least impact of land use change. It is thus suggested that the impact of the five-years reafforestation patterns on the SOC in the 0~60 cm soil layer is insignificant. In contrast, the impact of the land use change could be one of the controlling factors affecting SOC in the three gorges reservoir area.展开更多
基金Key Project of Chinese Academy of Sciences, No. KZ95T-03-02-04 Key Project of State Science and Technology, No. 96-911-01-01
文摘The paper respectively adopted physio-chemical properties of every soil stratum from 2473 soil profiles of the second national soil survey. The corresponding carbon content of soils is estimated by utilizing conversion coefficient 0.58. In the second soil survey, the total amount of soil organic carbon is about 924.18xl08t and carbon density is about 10.53 kgC/m2 in China according to the area of 877.63x106hm2 surveyed throughout the country. The spatial distribution characteristics of soil organic carbon in China is that the carbon storage increases when latitude increases in eastern China and the carbon storage decreases when longitude reduces in northern China. A transitional zone with great variation in carbon storage exists. Moreover, there is an increasing tendency of carbon density with decrease of latitude in western China. Soil circle is of great significance to global change, but with substantial difference in soil spatial distribution throughout the country. Because the structure of soil is inhomogeneous, it could bring some mistakes in estimating soil carbon reservoirs. It is necessary to farther resolve soil respiration and organic matter conversion and other questions by developing uniform and normal methods of measurement and sampling.
基金Supported by National Natural Science Foundation(31670616)
文摘To reveal the influencing factors of soil organic carbon( SOC) density in 0-30 cm soil layer of Lanlingxi watershed in Three Gorges Reservoir Area,build the regression equation for soil organic carbon density and adjust carbon sink strategy in this region,soil samples of top soil profile( 0-30 cm) in five land use types were selected by the typical method. The SOC density of top soil profile( 0-30 cm) and other environmental factors,such as elevation,slope and aspect and soil properties in five land use types,including grassland,scrubland,woodland,land for tea plantation and farmland in the watershed was investigated. The relationship of SOC density with physical properties of soil was also examined. The SOC density of the above five land use types averaged 7. 55,3. 83,6. 04,10. 24,2. 83 kg·m^(-2),respectively. There was a significant difference in the SOC density( p < 0. 01); SOC density was significantly positively correlated with organic matter content( R= 0. 942,p < 0. 01),clay mass percentage( R = 0. 898,p < 0. 01),total nitrogen( R = 0. 863,p < 0. 01),elevation( R = 0. 599,p < 0. 01); SOC density was significantly negatively correlated with sand content( R =-0. 932,p < 0. 01) and slope( R =-0. 407,p < 0. 05); and the correlation between SOC density and soil p H,total phosphorus or total potassium was not obvious. Multiple correlation coefficient R = 0. 986( R > 0. 8,highly correlated) between SOC density and environmental factors was greater than the correlation coefficient between any one independent variable and dependent variable,which fully proved the combined effect of environmental factors on SOC density.
基金supported by the National Natural Science Foundation of China(Grant No.40973076 and 41072099)
文摘In this study, by analyzing CH4 concentration and 613CCH4 in soil-gas profiles, the potentials of CH4 gas transfer from ground to atmosphere were studied at four representative sectors in the Yakela condensed gas field in the Tarim Basin, Xinjiang, China. These are: 1) the oil-gas interface sector, 2) fault sector, 3) oil-water interface sector, 4) an external area. Variation in CH4 in soil-gas profiles showed that CH4 microseepage resulted from the migration of subsurface hydrocarbon from deep-buried reservoirs to the earth's surface. It was found that CH4 from deep-buried reservoirs could migrate upwards to the surface through faults, fissures and permeable rocks, during which some CH4 was oxidized and the unoxidized methane remained in the soil or was emitted into the atmosphere. The lowest level of CH4 at the soil-gas profile was found at the CH4 gas-phase equilibrium point at which the CH4 migration upwards from deep-buried reservoirs and the CH4 diffusion downwards from the atmosphere met. The 613CcH4 and ethane, propane in soil gas exhibited thermogenic characteristics, suggesting the occurrence of CH4 microseepage from deep-buried reservoirs. A linear correlation analysis between CH4 concentrations in soil gas and temperature, moisture, pH, Eh, Ec and particle size of soil indicated that both soil Eh and soil temperature could affect CH4 concentration in soil gas while soil pH could indirectly influence soil methanotrophic oxidation via impacting soil Eh.
文摘探知全球草地生态系统的土壤有机碳储量是调控全球陆地碳循环过程的必要环节和最大难题之一。本文回顾了草地生态系统土壤有机碳储量的研究进展,分析了现有的草地土壤有机碳模拟技术——草地土壤有机碳模型的主要技术特征,就模型的基础数据、模型的结构和模型内的函数参数等三方面,讨论了现存草地土壤有机碳模拟技术的缺陷,提出样地清查、遥感分析和模型模拟方法的综合运用将是解决这一问题的根本途径。最后,提出了一种基于草地综合顺序分类系统(comprehensive sequential classification system of grassland,CSCS)的草地土壤有机碳储量分类指数模型的构架。将样地清查、基于CSCS的草地土壤有机碳分类指数模型与遥感的高时空分辨率特征三者耦合起来,分析不同草地类型、气候区划等生态条件下的草地土壤有机碳特征,以求提高草地土壤有机碳估算结果的准确性。此外,草地生态系统土壤的碳汇效应等生态功能与放牧利用不存在绝对对立关系,实现放牧的现代化转型是以对草地土壤有机碳储量精准估算为前提的。
文摘Through comparing the concentration and inventory of soil organic carbon (SOC) and its distribution in the soil profiles under several reafforestation patterns, this paper studied the effect of different reafforestation patterns on SOC in the 0~60 cm soil layer located in Lanlingxi drainage area of Zigui county, the three gorges reservoir area. The results showed: In five years after the beginning of the project of Grain for Green, the concentration and inventory of SOC in the 0~30 cm soil layer under most reafforestation patterns were higher than those under contrast 2 (cropland) conditions, while the concentration and inventory of SOC in the 0~60 cm soil layer did not change or even decreased in some cases. The concentration and inventory of SOC and the decreasing magnitude of SOC with the soil profile depth under all the studied reafforestation patterns were lower than those under contrast 1 (shrubbery land) conditions, which received the least impact of land use change. It is thus suggested that the impact of the five-years reafforestation patterns on the SOC in the 0~60 cm soil layer is insignificant. In contrast, the impact of the land use change could be one of the controlling factors affecting SOC in the three gorges reservoir area.