A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was f...A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.展开更多
CdS microcrystallite doped SiO 2 glass films on titanium metal substrates were prepared by sol gel process. The effects of solution composition and viscosity, heat treatment parameters and substrate pretreatment m...CdS microcrystallite doped SiO 2 glass films on titanium metal substrates were prepared by sol gel process. The effects of solution composition and viscosity, heat treatment parameters and substrate pretreatment method on the film qualities were studied. The transformation process of gel to CdS doped SiO 2 glass film, the structure of these films, the substrate/film interface bonding state and crystalline phase were analyzed by DTA, IRRS, SEM, EDS and XRD. The IRRS results show that Si O Ti linkages are formed between titanium substrate and thin film during heat treatment process. The preferential heat treatment of titanium surface in oxidizing atmosphere will be beneficial to increase the interface bonding strength. The thin films bonded with the substrates chemically and contained very fine CdS crystals with 20~40 nm in size.展开更多
The supported membranes of Al 2O 3 and its modification membranes were prepared.Al 2O 3,Al 2O 3 SiO 2 TiO 2 and Al 2O 3 SiO 2 TiO 2 ZrO 2 membranes were mamufatured by the slip casting process using...The supported membranes of Al 2O 3 and its modification membranes were prepared.Al 2O 3,Al 2O 3 SiO 2 TiO 2 and Al 2O 3 SiO 2 TiO 2 ZrO 2 membranes were mamufatured by the slip casting process using mixing boehmite,silicate,titania and zirconia sols under proper conditions,then the composite membrane was prepared.The structure and characteristics of the membrane were determined by XRD,SEM and AFM measurement.The conditions of preparation of the membrane are discussed.The thickness of the layer is about 1-2μm,the diameter of an average pore is 200-300nm and has a narrow pore distribution without crack forming.By changing the ratios of Al∶Si∶Ti∶Zr(mol),variations of surface pore size of Al 2O 3 SiO 2 TiO 2 ZrO 2 membrane can be gained.展开更多
The CeTi 2O 6, which is formed above 1300 ℃ by ceramic method, was obtained at 700 ℃ using sol gel synthesis method. XRD analysis shows that there is 8% deficient of Ce in the structure. The chemical formula is C...The CeTi 2O 6, which is formed above 1300 ℃ by ceramic method, was obtained at 700 ℃ using sol gel synthesis method. XRD analysis shows that there is 8% deficient of Ce in the structure. The chemical formula is Ce 0.92 Ti 2O 5.84 , which has a monoclinic structure with space group of C 2/ m . Its cell parameters are a =0.9811(8) nm, b =0.3726(3) nm, c =0.6831(6) nm, and β =118.84°. After being treated at 1300 ℃ for 3 h, the system keeps stable but the deficient disappears, while the chemical formula change to the normal CeTi 2O 6, and the cell parameters are a =0.9813(3) nm, b =0.3752(4) nm, c =0.6883(5) nm, β =119.05°. The key to synthesis the precursors of CeTi 2O 6 is that Ti 4+ and Ce 3+ ions must reach the atomistic distributing state and prevent the oxidation of Ce 3+ during sol gel process.展开更多
A series of nanostructured Zr-doped anatase TiO_2 tubes with the Zr/Ti molar ratio of 0.01, 0.02, 0.03, and0.09 were prepared by a sol–gel technology on a carbon fiber template. The electrochemical performance of Zr-...A series of nanostructured Zr-doped anatase TiO_2 tubes with the Zr/Ti molar ratio of 0.01, 0.02, 0.03, and0.09 were prepared by a sol–gel technology on a carbon fiber template. The electrochemical performance of Zr-doped anatase TiO_2 as anodes for rechargeable lithium batteries was investigated and compared with undoped titania. Tests represented that after 35-fold charge/discharge cycling at C/10 the reversible capacity of Zr-doped titania(Zr/Ti = 0.03) reaches 135 m A h g^(-1), while the capacity of undoped titania(Zr/Ti = 0) yielded only 50 m A h g^(-1). Based on the results of the physicochemical investigation, three reasons of improving electrochemical performance of Zr-doped titania were suggested. According to the scanning electron microscopy and transmission electron microscopy, Zr^(4+) doping induces a decrease in nanoparticle size, which facilitates the Li+diffusion. The Raman investigations show the more open structure of Zr-doped TiO_2 as compared to undoped titania due to changing of the unit cell parameters, that significantly affects on the reversibility of the insertion/extraction process. The electrochemical impedance spectroscopy results indicate that substitution of Zr^(4+) for Ti^(4+) into anatase TiO_2 has favorable effects on the conductivity.展开更多
In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabrica...In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.展开更多
(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) ultra-fine powders were synthesized by a novel sol–gel route,and the mechanism of the reaction was discussed.SrCO_(3),BaCO_(3),oxalate niobium and citric acid were used to initiate the ...(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) ultra-fine powders were synthesized by a novel sol–gel route,and the mechanism of the reaction was discussed.SrCO_(3),BaCO_(3),oxalate niobium and citric acid were used to initiate the sol–gel process,and ethylene glycol(EG)was added to further polymerize the cross-linking structure.The evolution of the(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) phase,the reaction process and the microstructures were investigated by X-ray diffraction(XRD),Raman spectroscopy,Fourier transform infrared spectroscopy,DSC-TG and scanning electron microscopy.The synthesis temperature of the(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) powders reached as low as 1200℃,and the size and morphology of the powders were controlled by temperature.By adjusting the calcination temperature,we obtained(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) powders with uniform sizes of 20 nm to 500 nm.Then,dense(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) ceramics were successfully prepared using these ultrafine powders.Finally,an enhanced electrocaloric effect(ECE)value of 0.35℃ was obtained at 100 kV/cm.展开更多
基金Supported by the National Natural Science Foundation of China(21276123,21490581)the National High Technology Research and Development Program of China(2012AA03A606)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)the Natural Science Research Plan of Jiangsu Universities(11KJB530006)the "Summit of the Six Top Talents" Program of Jiangsu Provincea Project Funded by the Priority Academic Program development of Jiangsu Higher Education Institutions(PAPD)
文摘A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.
文摘CdS microcrystallite doped SiO 2 glass films on titanium metal substrates were prepared by sol gel process. The effects of solution composition and viscosity, heat treatment parameters and substrate pretreatment method on the film qualities were studied. The transformation process of gel to CdS doped SiO 2 glass film, the structure of these films, the substrate/film interface bonding state and crystalline phase were analyzed by DTA, IRRS, SEM, EDS and XRD. The IRRS results show that Si O Ti linkages are formed between titanium substrate and thin film during heat treatment process. The preferential heat treatment of titanium surface in oxidizing atmosphere will be beneficial to increase the interface bonding strength. The thin films bonded with the substrates chemically and contained very fine CdS crystals with 20~40 nm in size.
基金Project cooperated with College of Environment Engineering,Huazhong University of Technology
文摘The supported membranes of Al 2O 3 and its modification membranes were prepared.Al 2O 3,Al 2O 3 SiO 2 TiO 2 and Al 2O 3 SiO 2 TiO 2 ZrO 2 membranes were mamufatured by the slip casting process using mixing boehmite,silicate,titania and zirconia sols under proper conditions,then the composite membrane was prepared.The structure and characteristics of the membrane were determined by XRD,SEM and AFM measurement.The conditions of preparation of the membrane are discussed.The thickness of the layer is about 1-2μm,the diameter of an average pore is 200-300nm and has a narrow pore distribution without crack forming.By changing the ratios of Al∶Si∶Ti∶Zr(mol),variations of surface pore size of Al 2O 3 SiO 2 TiO 2 ZrO 2 membrane can be gained.
文摘The CeTi 2O 6, which is formed above 1300 ℃ by ceramic method, was obtained at 700 ℃ using sol gel synthesis method. XRD analysis shows that there is 8% deficient of Ce in the structure. The chemical formula is Ce 0.92 Ti 2O 5.84 , which has a monoclinic structure with space group of C 2/ m . Its cell parameters are a =0.9811(8) nm, b =0.3726(3) nm, c =0.6831(6) nm, and β =118.84°. After being treated at 1300 ℃ for 3 h, the system keeps stable but the deficient disappears, while the chemical formula change to the normal CeTi 2O 6, and the cell parameters are a =0.9813(3) nm, b =0.3752(4) nm, c =0.6883(5) nm, β =119.05°. The key to synthesis the precursors of CeTi 2O 6 is that Ti 4+ and Ce 3+ ions must reach the atomistic distributing state and prevent the oxidation of Ce 3+ during sol gel process.
基金the program of fundamental scientific researches of the Russian Academy of Sciences (project No. 0265-2014-0001)the support of the Russian Science Foundation (project No. 14-33-00009)+1 种基金the Government of the Russian Federation (the Federal Agency of Scientific Organizations)supported by the BP grant (A.A. Sokolov is superviser, competition for 2016–2017 years) for young researchers, postgraduates, and students
文摘A series of nanostructured Zr-doped anatase TiO_2 tubes with the Zr/Ti molar ratio of 0.01, 0.02, 0.03, and0.09 were prepared by a sol–gel technology on a carbon fiber template. The electrochemical performance of Zr-doped anatase TiO_2 as anodes for rechargeable lithium batteries was investigated and compared with undoped titania. Tests represented that after 35-fold charge/discharge cycling at C/10 the reversible capacity of Zr-doped titania(Zr/Ti = 0.03) reaches 135 m A h g^(-1), while the capacity of undoped titania(Zr/Ti = 0) yielded only 50 m A h g^(-1). Based on the results of the physicochemical investigation, three reasons of improving electrochemical performance of Zr-doped titania were suggested. According to the scanning electron microscopy and transmission electron microscopy, Zr^(4+) doping induces a decrease in nanoparticle size, which facilitates the Li+diffusion. The Raman investigations show the more open structure of Zr-doped TiO_2 as compared to undoped titania due to changing of the unit cell parameters, that significantly affects on the reversibility of the insertion/extraction process. The electrochemical impedance spectroscopy results indicate that substitution of Zr^(4+) for Ti^(4+) into anatase TiO_2 has favorable effects on the conductivity.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject supported by the Recruitment Program of Global Youth Experts,ChinaProject(20130162120031)supported by Research Fund for the Doctoral Program of Higher Education of China
文摘In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.
基金National Natural Science Foundation of China under Grant No.51202215Natural Science Foundation of Zhejiang Province under Grant No.LY15E02003Chinese National Basic Research Program under Grant No.2015CB654601.
文摘(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) ultra-fine powders were synthesized by a novel sol–gel route,and the mechanism of the reaction was discussed.SrCO_(3),BaCO_(3),oxalate niobium and citric acid were used to initiate the sol–gel process,and ethylene glycol(EG)was added to further polymerize the cross-linking structure.The evolution of the(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) phase,the reaction process and the microstructures were investigated by X-ray diffraction(XRD),Raman spectroscopy,Fourier transform infrared spectroscopy,DSC-TG and scanning electron microscopy.The synthesis temperature of the(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) powders reached as low as 1200℃,and the size and morphology of the powders were controlled by temperature.By adjusting the calcination temperature,we obtained(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) powders with uniform sizes of 20 nm to 500 nm.Then,dense(Sr_(0.5)Ba_(0.5))Nb_(2)O_(6) ceramics were successfully prepared using these ultrafine powders.Finally,an enhanced electrocaloric effect(ECE)value of 0.35℃ was obtained at 100 kV/cm.