期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical Analysis of Phase Change and Container Materials for Thermal Energy Storage in the Storage Tank of Solar Water Heating System
1
作者 SINGH Shailendra ANAND Abhishek +1 位作者 SHUKLA Amritanshu SHARMA Atul 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期408-421,共14页
This study evaluates the effectiveness of phase change materials(PCMs) inside a storage tank of warm water for solar water heating(SWH) system through the theoretical simulation based on the experimental model of S.Ca... This study evaluates the effectiveness of phase change materials(PCMs) inside a storage tank of warm water for solar water heating(SWH) system through the theoretical simulation based on the experimental model of S.Canbazoglu et al.The model is explained by five fundamental equations for the calculation of various parameters like the effectiveness of PCMs,the mass of hot water,total heat content,and duration of charging.This study simulated eleven PCMs to analyze their effectiveness like Sodium hydrogen phosphate dodecahydrate(SHPD),OM 37,N-Eicosane(NE),Lauric acid(LA),Paraffin wax(PW),OM 48,Paraffin wax C_(20-33)(PW-C20-33),Sodium acetate trihydrate(SAT),Palmitic acid(PA),Myristic acid(MA),and Stearic acid(SA).Among all PCMs,the SHPD has found the highest value of effectiveness factor of 3.27.So,it is the most recommended PCM for the storage tank of the SWH system.The study also includes the melt fraction analysis of all enumerated PCMs corresponding to container materials of stainless steel,glass,aluminum mixed,tin,aluminum,and copper.This melt fraction analysis is performed by making a coding program in the FORTRAN programming language.Through the analysis,copper container material is found to have high melting rate for all PCMs so it is superior to other container materials. 展开更多
关键词 theoretical model solar water heating system phase change material effectiveness factor melt fraction
原文传递
Overview of China's National Standards for Solar Water Heating
2
作者 JIA Tieying 《China Standardization》 2007年第5期6-11,共6页
  Introduction   Energy supply is one of the major challenges facing China. The rate at which demand is outstripping supply led the Standing Committee of the National People's Congress to pass the Renewable E...   Introduction   Energy supply is one of the major challenges facing China. The rate at which demand is outstripping supply led the Standing Committee of the National People's Congress to pass the Renewable Energy Law of the PRC at its fourteenth session in February, 2005.…… 展开更多
关键词 Overview of China’s National Standards for solar water heating
下载PDF
Potential application of a novel building-integrated solar facade water heating system in a subtropical climate:A case study for school canteen
3
作者 Wenjie Liu Xinwen Liu +3 位作者 Chongchao Pan Chunying Li Woonming Lau Yuanli Lyu 《Building Simulation》 SCIE EI CSCD 2023年第10期1987-2004,共18页
The design and potential application analysis of the novel solar-absorbing integrated facade module and its corresponding building-integrated solar facade water heating system are presented in this study.Compared with... The design and potential application analysis of the novel solar-absorbing integrated facade module and its corresponding building-integrated solar facade water heating system are presented in this study.Compared with the conventional building envelope,the main novities of the proposed facade module lie in its contributions towards the supplied water preheating to loads and the internal heat gain reduction.Besides,the proposed building-integrated solar facade water heating system broadens the combination modes of the solar thermal system and the building envelope.A dynamic model is introduced first for system design and performance prediction.To evaluate the energy-saving potential and feasibility of the implementation of the proposed facade module,this paper carried out a suitable case study by replacing the conventional facade module in the ongoing retrofitting project of a kitchen,part of the canteen of a graduate school.The detailed thermal performances of three system design options are compared in the typical winter and summer weeks and throughout the year,and then,with the preferred system design,the economic,energy,and environmental effects of the proposed system are evaluated.It was found that the system with a high flow rate of the circulating water is suggested.The annual electricity saved reaches 4175.3 kWh with yearly average thermal efficiency at 46.9%,and its corresponding cost payback time,energy payback time,and greenhouse gas payback time are 3.8,1.7,1.7 years,respectively.This study confirms the feasibility and long-term benefits of the proposed building-integrated solar facade water heating system in buildings. 展开更多
关键词 solar thermal utilization building-integrated solar water heating system novel prefabricated facade module life cycle assessment building retrofitting
原文传递
Arrangement of Multirow Solar Collector Array on Limited Roof Width
4
作者 PU Shaoxuan XIA Chaofeng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第4期76-82,共7页
At the limited roof north-south (N-S) width of a building, for the array with multirow collectors based on no shading at winter solstice noon and sloped at latitude, this paper studied the shading and the radiant en... At the limited roof north-south (N-S) width of a building, for the array with multirow collectors based on no shading at winter solstice noon and sloped at latitude, this paper studied the shading and the radiant energy striking on solar collector array. Based on Kunming solar radiation data, the annual and monthly solar radiant energy striking on multi-array collectors was analyzed and estimated, from no shading to partial shading by adding 1-3 collector row, at the slopes of 10°, 15°, 20°, 25°, 30°, 35° and 40°, respectively. The results showed that properly increasing the row number by reducing the slope of collectors was reasonable in order to get more annual radiant energy. Adding 1 row at 10° of slope was economical for Kunming, based on the 5-row array at 25°. And adding collector row by 20% at 10° of slope could increase the radiant energy striking on the array by 19%. 展开更多
关键词 limited roof width solar water heating system multirow collector array optimizing design
下载PDF
Efficiency enhancement of building multi-layer solar collector with SiO2–TiO2 hybrid nanofluids
5
作者 N.N.M.Zawawi W.H.Azmi +2 位作者 Z.A.A.Majid R.A.Rahim H.M.Ali 《Building Simulation》 SCIE EI CSCD 2023年第10期1851-1862,共12页
Due to the depletion of conventional energy sources and its limitless resources,solar energy is currently being considered as a viable alternative,especially for water heating systems.The thermal performance of multil... Due to the depletion of conventional energy sources and its limitless resources,solar energy is currently being considered as a viable alternative,especially for water heating systems.The thermal performance of multilayer solar collectors for water heating systems can be improved further by introducing hybrid nanofluids as advanced fluids.This study demonstrates the utilisation of hybrid nanofluids in heating systems by employing a multilayer absorber solar collector.The SiO2–TiO2 hybrid nanofluids at volume concentrations up to 2.0%were tested at various flow rates(1.7 to 3.7 LPM)and solar radiation intensities(250 to 1000 W/m2).The thermal performance of the solar collector was assessed by measuring the temperature variation,heat loss,and overall efficiency of the collector.At the optimal volume concentration,the temperature difference for solar collectors employing SiO2–TiO2 hybrid nanofluids increased significantly.The optimal volume concentration of 1.5%yields a maximum temperature difference of 9.5°C.In addition,the efficiency and fluid temperature of the solar collector containing hybrid nanofluids have been enhanced by 22%and 37%,respectively.The SiO2–TiO2 hybrid nanofluids with the optimal volume concentration of 1.5%were therefore recommended for maximum efficiency in the solar collector. 展开更多
关键词 solar collector hybrid nanofluids solar water heating system solar simulator thermal efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部