Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the d...Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density(PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.展开更多
We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,an...We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,and changes in precipitation.We identified a clear wave signal using the two-dimensional fast Fourier transform method;the waves propagated westwards,with wavelengths of 45–20 km,periods of 50–120 min,and phase velocities mainly concentrated in the-25 m/s to-10 m/s range.The results of wavelet cross-spectral analysis further confirmed that the waves were gravity waves,peaking at 11:00 UTC,June 17,2016.The gravity wave signal was identified along 79.17–79.93°E,81.35–81.45°E and 81.5–81.83°E.The gravity waves detected along 81.5–81.83°E corresponded well with precipitation that accumulated in 1 h,indicating that gravity waves could be considered a rainstorm precursor in future precipitation forecasts.展开更多
We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extension...We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.展开更多
This paper presents a combination of the hybrid spectral collocation technique and the spectral homotopy analysis method(SHAM for short) for solving the nonlinear boundary value problem(BVP for short) for the electroh...This paper presents a combination of the hybrid spectral collocation technique and the spectral homotopy analysis method(SHAM for short) for solving the nonlinear boundary value problem(BVP for short) for the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit. The accuracy of the present solution is found to be in excellent agreement with the previously published solution. The authors use an averaged residual error to find the optimal convergence-control parameters. Comparisons are made between SHAM generated results, results from literature and Matlab ode45 generated results, and good agreement is observed.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51279102)the High-Technology Ship Research Project of the Ministry of Industry and Information Technology of China(Grant No.2012-534)
文摘Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density(PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.
基金Project supported by China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201406002)the National Natural Science Foundation of China(Grant Nos.41575065 and 41405049)+1 种基金the National Natural Science Foundation International Cooperation Project,China(Grant No.41661144024)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA17010100)
文摘We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,and changes in precipitation.We identified a clear wave signal using the two-dimensional fast Fourier transform method;the waves propagated westwards,with wavelengths of 45–20 km,periods of 50–120 min,and phase velocities mainly concentrated in the-25 m/s to-10 m/s range.The results of wavelet cross-spectral analysis further confirmed that the waves were gravity waves,peaking at 11:00 UTC,June 17,2016.The gravity wave signal was identified along 79.17–79.93°E,81.35–81.45°E and 81.5–81.83°E.The gravity waves detected along 81.5–81.83°E corresponded well with precipitation that accumulated in 1 h,indicating that gravity waves could be considered a rainstorm precursor in future precipitation forecasts.
文摘We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.
文摘This paper presents a combination of the hybrid spectral collocation technique and the spectral homotopy analysis method(SHAM for short) for solving the nonlinear boundary value problem(BVP for short) for the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit. The accuracy of the present solution is found to be in excellent agreement with the previously published solution. The authors use an averaged residual error to find the optimal convergence-control parameters. Comparisons are made between SHAM generated results, results from literature and Matlab ode45 generated results, and good agreement is observed.