Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternati...Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.展开更多
Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical...Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation. [展开更多
An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a p...An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a positive solution of the corresponding steady state problem is mainly discussed.First,a prior estimates(positive upper and lower bounds) of the positive steady states of the reaction-diffusion system is given by the maximum principle and the Harnack inequation.Then,the non-existence of non-constant positive steady states by using the energy method is given.Finally,the existence of non-constant positive steady states is obtained by using the topological degree.展开更多
The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a C...The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 ℃ to 630 ℃) at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted: ηα = [0.871 - 0.00849. γ0.74924]. exp(3.7311, fs) . The microstructure of quenched samples was examined to understand the alloy's rheological behavior.展开更多
This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed i...This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.展开更多
In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by...In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.展开更多
The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (_〈40 Hz) emanate mostly ...The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (_〈40 Hz) emanate mostly from central structures of the brain, and responses from high rates (〉80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed re- duction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic.展开更多
With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are ...With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are present in similar concentrations.展开更多
The sawtooth-like oscillations resulting from the m/n=2/1 double tearing mode(DTM)are numerically investigated through the three-dimensional,toroidal,nonlinear resistive-MHD code(CLT).We find that the nonlinear evolut...The sawtooth-like oscillations resulting from the m/n=2/1 double tearing mode(DTM)are numerically investigated through the three-dimensional,toroidal,nonlinear resistive-MHD code(CLT).We find that the nonlinear evolution of the m/n=2/1 DTM can lead to sawtooth-like oscillations,which are similar to those driven by the kink mode.The perpendicular thermal conductivity and the external heating rate can significantly alter the behaviors of the DTM driven sawtooth-like oscillations.With a high perpendicular thermal conductivity,the system quickly evolves into a steady state with m/n=2/1 magnetic islands and helical flow.However,with a low perpendicular thermal conductivity,the system tends to exhibit sawtooth-like oscillations.With a sufficiently high or low heating rate,the system exhibits sawtooth-like oscillations,while with an intermediate heating rate,the system quickly evolves into a steady state.At the steady state,there exist the non-axisymmetric magnetic field and strong radial flow,and both are with helicity of m/n=2/1.Like the steady state with m/n=1/1 radial flow,which is beneficial for preventing the helium ash accumulation in the core,the steady state with m/n=2/1 radial flow might also be a good candidate for the advanced steady state operations in future fusion reactors.We also find that the behaviors of the sawtooth-like oscillations are almost independent of tokamak geometry,which implies that the steady state with saturated m/n=2/1 islands might exist in different tokamaks.展开更多
The bifurcation dynamics of shallow arch which possesses initial deflection under periodic excitation for the case of 1:2 internal resonance is studied in this paper. The whole parametric plane is divided into several...The bifurcation dynamics of shallow arch which possesses initial deflection under periodic excitation for the case of 1:2 internal resonance is studied in this paper. The whole parametric plane is divided into several different regions according to lire types of motions; then the distribution of steady state motions of shallow arch on the plane of physical parameters is obtained. Combining with numerical method, the dynamics of the system in different regions, especially in the Hopf bifurcation region, is studied in detail. The rule of the mode interaction and the route to chaos of the system is also analysed at the end.展开更多
Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentrati...Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.展开更多
We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Ca...We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.展开更多
In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model wa...In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.展开更多
The steady state creep rate equdtion of a nickel base superalloy Inconel 718, strengthened by coherent ordered disc-shaped bct γ^(11) phase and coherent spherical fcc γ~1 phase precipitates, has been established in ...The steady state creep rate equdtion of a nickel base superalloy Inconel 718, strengthened by coherent ordered disc-shaped bct γ^(11) phase and coherent spherical fcc γ~1 phase precipitates, has been established in the stress and temperature ranges of 620-840 MN m^(-2) and 853-943K, respecti- vely. Constant stress tensile creep tests were used to medsure the values of steady state creep rate, ε_s, and the consecutive stress reduction method was used to measure the back stress during creep deformation. The values of effective stress exponent, n_e, were detemined from the slopes of the lgε_s vs. lg(σ_a-σ_0)/G plots. The effect of grain size, d, on steady state creep rdte has been also studied in this investigation, and the grain size sensitive exponents m were detemined from the slopes of lgε_s vs. lg(b/d) plots. The creep rate equations of Inconel 718, in the above stress and temperature ranges, have been proposed to be ε_s=1.6×10^(-5)(D_1Gb/KT) (b/d )^(0.19)[(σ_a-σ_0)/G]^(1.35) in diffusional creep region, and ε_s =75(D_1Gb/KT) (b/d)^(-0.42)[(σ_a-σ_0)/G]^(5.5) in dislocation power law creep region.展开更多
A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It ...A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.展开更多
By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quant...By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .展开更多
Under steady-state conditions, the general currents of EE reactions at disk,hemispherical and spherical microelectrodes are derived.From these equations, some electrode reaction parameters can be very simply obtained.
The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at...The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at the stage of transient to a steady state is shown to be essentially non-uniform, that may in its turn result in stable structures in velocity field of particles of the material. It may also influence development of deformation at the further stages.展开更多
Identification of steady state and transient state plays an important role in modeling,control,optimiza-tion,and fault detection of industrial processes.Many existing methods for state identification are not satisfact...Identification of steady state and transient state plays an important role in modeling,control,optimiza-tion,and fault detection of industrial processes.Many existing methods for state identification are not satisfactory in practical applications due to problems of ideal hypothesis,too many parameters,and poor robustness.In this paper,a novel state identification approach is proposed.The problem of state identification is transformed into finding the noise band of differential signal.For practical application,automatic selection of noise band amplitude is proposed to make the method convenient to be used.Problems of gross errors,low signal-to-noise ratio and online identification are considered.And comparison with other two methods shows that the proposed method has better identification performance.Simulations and experiments also prove the effectiveness and practicability of the proposed method.展开更多
We hypothesized that slowed oxygen uptake(VO_(2))kinetics for exercise transitions to higher power outputs(PO)within the steady state(SS)domain would increase the mean response time(MRT)with increasing exercise intens...We hypothesized that slowed oxygen uptake(VO_(2))kinetics for exercise transitions to higher power outputs(PO)within the steady state(SS)domain would increase the mean response time(MRT)with increasing exercise intensity during incremental exercise.Fourteen highly trained cyclists(mean±standard deviation[SD]);age(39±6)years[yr];and VO_(2) peak=(61±9)mL/kg/min performed a maximal,ramp incremental cycling test and on separate days,four 6-min bouts of cycling at 30%,45%,65%&75% of their incremental peak PO(Wpeak).SS trial data were used to calculate the MRT and verified by mono-exponential and linear curve fitting.When the ramp protocol attained the value from SS,the PO,in Watts(W),was converted to time(min)based on the ramp function W to quantify the incremental MRT(iMRT).Slope analyses for the VO_(2) responses of the SS versus incremental exercise data below the gas exchange threshold(GET)revealed a significant difference(p=0.003;[0.437±0.08]vs.[0.382±0.05]L·min^(-1)).There was a significant difference between the 45%Wpeak steady state VO_(2)(ss VO_(2))([3.08±0.30]L·min^(-1),respectively),and 30% Wpeak ss VO_(2)(2.26±0.24)(p<0.0001;[3.61±0.80]vs.[2.20±0.39]L·min^(-1))and between the iMRT for 45% and 30% Wpeak ss VO_(2) values([50.58±36.85]s vs.[32.20±43.28]s).These data indicate there is no single iMRT,which is consistent with slowed VO_(2) kinetics and an increasing VO_(2) deficit for higher exercise intensities within the SS domain.展开更多
基金Research was supported by the NSFC Grant 11872210Research was supported by the NSFC Grant 11872210 and Grant No.MCMS-I-0120G01+1 种基金Research supported in part by the AFOSR Grant FA9550-20-1-0055NSF Grant DMS-2010107.
文摘Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations(PDEs).The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions.A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems.Hence,they are easy to be applied to a general hyperbolic system.To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains,inverse Lax-Wendroff(ILW)procedures were developed as a very effective approach in the literature.In this paper,we combine a fifthorder fixed-point fast sweeping WENO method with an ILW procedure to solve steadystate solution of hyperbolic conservation laws on complex computing regions.Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids.Numerical results show highorder accuracy and good performance of the method.Furthermore,the method is compared with the popular third-order total variation diminishing Runge-Kutta(TVD-RK3)time-marching method for steady-state computations.Numerical examples show that for most of examples,the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.
文摘Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation. [
基金The National Natural Science Foundation of China (No.10601011)
文摘An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a positive solution of the corresponding steady state problem is mainly discussed.First,a prior estimates(positive upper and lower bounds) of the positive steady states of the reaction-diffusion system is given by the maximum principle and the Harnack inequation.Then,the non-existence of non-constant positive steady states by using the energy method is given.Finally,the existence of non-constant positive steady states is obtained by using the topological degree.
基金supported by the National Basic Research Program of China(No.2011CB606302-1)the National Natural Science Foundation of China(No.51074024)
文摘The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 ℃ to 630 ℃) at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted: ηα = [0.871 - 0.00849. γ0.74924]. exp(3.7311, fs) . The microstructure of quenched samples was examined to understand the alloy's rheological behavior.
基金Supported by the National High Technology Research and Development Program of China ("863" Program, No.2008AA042509)
文摘This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.
基金supported by the National Natural Science Foundation of China(11361053,11201204,11471148,11471330,145RJZA112)
文摘In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.
基金supported by the National Natural Science Foundation of China(No.90820304,61105123,and 31100714)National Basic Research Program of China(No.2011CB933204)
文摘The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (_〈40 Hz) emanate mostly from central structures of the brain, and responses from high rates (〉80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed re- duction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic.
文摘With a new approach,the general current expressions of two typical second order catalytic reactions at microelectrodes are obtained.This allows the study of fast chemical reactions and systems where the reactants are present in similar concentrations.
基金supported by National MCF Energy R&D Program of China(Nos.2019YFE03090500 and 2019YFE03030004)National Natural Science Foundation of China(Nos.12005185,11775188 and 11835010)Fundamental Research Fund for Chinese Central Universities(No.2021FZZX003-03-02)。
文摘The sawtooth-like oscillations resulting from the m/n=2/1 double tearing mode(DTM)are numerically investigated through the three-dimensional,toroidal,nonlinear resistive-MHD code(CLT).We find that the nonlinear evolution of the m/n=2/1 DTM can lead to sawtooth-like oscillations,which are similar to those driven by the kink mode.The perpendicular thermal conductivity and the external heating rate can significantly alter the behaviors of the DTM driven sawtooth-like oscillations.With a high perpendicular thermal conductivity,the system quickly evolves into a steady state with m/n=2/1 magnetic islands and helical flow.However,with a low perpendicular thermal conductivity,the system tends to exhibit sawtooth-like oscillations.With a sufficiently high or low heating rate,the system exhibits sawtooth-like oscillations,while with an intermediate heating rate,the system quickly evolves into a steady state.At the steady state,there exist the non-axisymmetric magnetic field and strong radial flow,and both are with helicity of m/n=2/1.Like the steady state with m/n=1/1 radial flow,which is beneficial for preventing the helium ash accumulation in the core,the steady state with m/n=2/1 radial flow might also be a good candidate for the advanced steady state operations in future fusion reactors.We also find that the behaviors of the sawtooth-like oscillations are almost independent of tokamak geometry,which implies that the steady state with saturated m/n=2/1 islands might exist in different tokamaks.
文摘The bifurcation dynamics of shallow arch which possesses initial deflection under periodic excitation for the case of 1:2 internal resonance is studied in this paper. The whole parametric plane is divided into several different regions according to lire types of motions; then the distribution of steady state motions of shallow arch on the plane of physical parameters is obtained. Combining with numerical method, the dynamics of the system in different regions, especially in the Hopf bifurcation region, is studied in detail. The rule of the mode interaction and the route to chaos of the system is also analysed at the end.
基金the German research council(Deutsche Forschungsgemeinschaft) for their financial support to the project:AG 26/18-1
文摘Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.
基金The project supported by National Natural Science of China under Grant No. 10675408 and Natural Science Foundation of Xianning College under Grant No. KZ0627
文摘We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276012)
文摘In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.
文摘The steady state creep rate equdtion of a nickel base superalloy Inconel 718, strengthened by coherent ordered disc-shaped bct γ^(11) phase and coherent spherical fcc γ~1 phase precipitates, has been established in the stress and temperature ranges of 620-840 MN m^(-2) and 853-943K, respecti- vely. Constant stress tensile creep tests were used to medsure the values of steady state creep rate, ε_s, and the consecutive stress reduction method was used to measure the back stress during creep deformation. The values of effective stress exponent, n_e, were detemined from the slopes of the lgε_s vs. lg(σ_a-σ_0)/G plots. The effect of grain size, d, on steady state creep rdte has been also studied in this investigation, and the grain size sensitive exponents m were detemined from the slopes of lgε_s vs. lg(b/d) plots. The creep rate equations of Inconel 718, in the above stress and temperature ranges, have been proposed to be ε_s=1.6×10^(-5)(D_1Gb/KT) (b/d )^(0.19)[(σ_a-σ_0)/G]^(1.35) in diffusional creep region, and ε_s =75(D_1Gb/KT) (b/d)^(-0.42)[(σ_a-σ_0)/G]^(5.5) in dislocation power law creep region.
基金supported by National Natural Science Foundation of China(No.10475065)
文摘A numerical model for the charge state distribution of plasmas in a collisional radiative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations. It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas, ranging from low Z to high Z elements. The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision. Furthermore, the NLTE effects are investigated by virtue of the model, and the differences between CRSS and LTE models for low density plasmas are quite evident.
基金This research work is supported by the National Natural Science Foundation of China.
文摘By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .
文摘Under steady-state conditions, the general currents of EE reactions at disk,hemispherical and spherical microelectrodes are derived.From these equations, some electrode reaction parameters can be very simply obtained.
文摘The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at the stage of transient to a steady state is shown to be essentially non-uniform, that may in its turn result in stable structures in velocity field of particles of the material. It may also influence development of deformation at the further stages.
文摘Identification of steady state and transient state plays an important role in modeling,control,optimiza-tion,and fault detection of industrial processes.Many existing methods for state identification are not satisfactory in practical applications due to problems of ideal hypothesis,too many parameters,and poor robustness.In this paper,a novel state identification approach is proposed.The problem of state identification is transformed into finding the noise band of differential signal.For practical application,automatic selection of noise band amplitude is proposed to make the method convenient to be used.Problems of gross errors,low signal-to-noise ratio and online identification are considered.And comparison with other two methods shows that the proposed method has better identification performance.Simulations and experiments also prove the effectiveness and practicability of the proposed method.
文摘We hypothesized that slowed oxygen uptake(VO_(2))kinetics for exercise transitions to higher power outputs(PO)within the steady state(SS)domain would increase the mean response time(MRT)with increasing exercise intensity during incremental exercise.Fourteen highly trained cyclists(mean±standard deviation[SD]);age(39±6)years[yr];and VO_(2) peak=(61±9)mL/kg/min performed a maximal,ramp incremental cycling test and on separate days,four 6-min bouts of cycling at 30%,45%,65%&75% of their incremental peak PO(Wpeak).SS trial data were used to calculate the MRT and verified by mono-exponential and linear curve fitting.When the ramp protocol attained the value from SS,the PO,in Watts(W),was converted to time(min)based on the ramp function W to quantify the incremental MRT(iMRT).Slope analyses for the VO_(2) responses of the SS versus incremental exercise data below the gas exchange threshold(GET)revealed a significant difference(p=0.003;[0.437±0.08]vs.[0.382±0.05]L·min^(-1)).There was a significant difference between the 45%Wpeak steady state VO_(2)(ss VO_(2))([3.08±0.30]L·min^(-1),respectively),and 30% Wpeak ss VO_(2)(2.26±0.24)(p<0.0001;[3.61±0.80]vs.[2.20±0.39]L·min^(-1))and between the iMRT for 45% and 30% Wpeak ss VO_(2) values([50.58±36.85]s vs.[32.20±43.28]s).These data indicate there is no single iMRT,which is consistent with slowed VO_(2) kinetics and an increasing VO_(2) deficit for higher exercise intensities within the SS domain.