The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, th...The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, the delay time varying with the rolling speed was evaded. After a Smith predictor was used to monitor the AGC system, the control laws were deduced for both proportional and integral regulators. The control strategies showed that by choosing the controller parameter P=∞ for both control algo- rithms each regulator could compensate the whole strip gage error in the first control step. The result shows that the integral algo- rithm is more controllable for the system regulating process and has a better steady-state precision than the proportional regulator. Compared with the traditional control strategy, the new control laws have a faster response speed and a hieher steadv-state precision.展开更多
The different reflection characteristics of the surface of tin steel strips and the different speeds of the tinning line demand an adaptive illumination light source for online machine vision inspection. This light so...The different reflection characteristics of the surface of tin steel strips and the different speeds of the tinning line demand an adaptive illumination light source for online machine vision inspection. This light source can be integrated with a time delay integration charge-coupled device (TDI CCD ) to capture the images of moving objects and facilitate inspection of the surface quality of tin steel strips. On-site application show the effectiveness of the TDI camera with the adaptive illumination light source in detecting the surface defects on tin steel strips of three different materials and with different tin coating weights.展开更多
Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental com...Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental compatibility,the range of coating materials and application properties. Physical vapor deposition(PVD) is an environment-friendly technology and enables nearly unlimited material and process variety.Electron beam high-rate evaporation with deposition rates up to some micrometers per second is the most productive PVD technology for low cost coating.The combination of evaporation with powerful plasma is an efficient way to improve the layer properties.The developed plasma sources can be used for special plasma enhanced chemical vapor deposition(PECVD) processes too. The paper gives an overview about the latest developments in these technologies.Furthermore,the paper explains some examples of new layer stacks onto steel strips.While enhanced corrosion protection can be obtained by magnesium,aluminium or copper containing coatings other functional surface properties come more and more in the focus of interest.For instance,decorative gold colored layers,transparent scratch resistant layers,hard coatings and photo catalytic layers were deposited on running steel strips.Functional layers and layer systems for energy saving and sun energy absorption by solar thermal effects and photo voltaics are under development.The coatings are prepared under the conditions of very high deposition rates using our in-line vacuum coater for metallic strips and sheets with the name MAXI.The influence of the process and plasma parameters on the layer properties were investigated and will be demonstrated for some applications.展开更多
An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inhe...An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inherent characteristics of the non-immersed and partially immersed strip in liquid zinc were calculated on the basis of theoretical analysis and numerical simulation, respectively. Multi-parameter fitting of the deviation between results using different methods was performed. To optimize the strip excitation frequency away from the resonance region, on-line vibration control of the strip near the air knife under full product conditions was achieved by changing the field production parameters based on the field test results. The results indicate that although the axial velocity has little effect on the inherent characteristics of the strip compared with other manufacturing parameters such as the steel specifications and tension, it induces external excitations,including moving the aerodynamic load and bearing vibration. To some degree, the vibration near the air knife can be reduced by strengthening the support stiffness of the contact rolls. A total on-line control program of surface quality for continuous hot-dip galvanized pure Zn and galvannealed steel sheet in the cooling section is proposed.展开更多
To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex mult...To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex multivariate statistical analysis, and low accuracy and difficulty in mechanical property prediction, an industrial data analysis platform for coiled tubing steel strips production has been preliminarily developed.As the premise and foundation of analysis, industrial data collection, storage, and utilization are realized by using multiple big data technologies.With Django as the agile development framework, data visualization and comprehensive analyses are achieved.The platform has functions including overview survey, stability analysis, comprehensive analysis(such as exploratory data analysis, correlation analysis, and multivariate statistics),precise steel strength prediction, and skin-passing process recommendation.The platform is helpful for production overviewing and prompt responding, laying a foundation for an in-depth understanding of product characteristics and improving product performance stability.展开更多
Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process pa...Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.展开更多
The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of ox...The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.展开更多
In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail...In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail. It was found that the strips possessed a fine microstructure compared with the mould cast steels. With increasing phosphorus content more ferrite has been formed with finer grains.展开更多
By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter...By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter twin-roll strip caster. The results indicate that the microstructure of the strips includes two columnar zones with highly compact dendrites and one equiaxed zone. The characteristics, such as grain size and growing direction of columnar grains and equiaxed grains, were investigated. An additional transitional area with many finer grains between the columnar zone and the equiaxed zone was found. As shown in EBSD analysis, small angle boundaries exist both in the columnar zone and the equiaxed zone, although they are especially more in the transitional area. Additionally, some 〈111〉 twin boundaries were found in the microstructure of the strips.展开更多
The M2 high-speed steel strip was produced by using the laboratory scale twin roll strip caster. The microstructure and eutectic carbide morphology of thus produced products were observed and analyzed, and the compari...The M2 high-speed steel strip was produced by using the laboratory scale twin roll strip caster. The microstructure and eutectic carbide morphology of thus produced products were observed and analyzed, and the comparison of those with conventional products was carried out. The effects of the processing parameters such as the melting temperature, the pouring temperature, rolling speed and separating force on the microstructure and eutectic carbide morphology and their distribution were analyzed. The spheroidizing process of the strips in the annealing process was investigated. The relations between the growth and spheroidizing of the eutectic carbide and the annealing technology were obtained, and the mechanism of the twin roll strip casting process improving the eutectic carbide spheroidizing was discussed. The theoretical instruction for determining the subsequent treatment process was provided.展开更多
In order to improve the surface quality and properties of AISI 304 stainless steel strip produced with the twinroll strip casting process,the strip was directly cold-rolled. The results show that cold rolling clearly ...In order to improve the surface quality and properties of AISI 304 stainless steel strip produced with the twinroll strip casting process,the strip was directly cold-rolled. The results show that cold rolling clearly improves the surface roughness,microstructure and properties. Residual δ ferrite is greatly decreased, anisotropy becomes less obvious and corrosion resistance is greatly improved. These results demonstrate the feasibility of directly cold-rolled AISI 304 stainless steel strip.展开更多
An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection ...An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.展开更多
Electropulsing-induced recrystallization and its effect on mechanical properties of oriented silicon steel strips (Fe-3.0%Si) were studied by optical microscopy, scanning electron microscopy and electron back-scatte...Electropulsing-induced recrystallization and its effect on mechanical properties of oriented silicon steel strips (Fe-3.0%Si) were studied by optical microscopy, scanning electron microscopy and electron back-scatter diffraction. The results indicated that electropulsing accelerated recrystallization, and decreased the temperature of recrystallization. Electropulsing favors refinement of the grain structure of the alloy. Effects of electropulsing on strength and elongation of the alloy were discussed from the point view of dislocation dynamics, microstructural changes, and electropulsing kinetics.展开更多
The tilted waves in steel strip during rolling and leveling of sheet metal can be classified into two different types of buckling, oblique and herringbone buckling, respectively. Numerical considerations of oblique an...The tilted waves in steel strip during rolling and leveling of sheet metal can be classified into two different types of buckling, oblique and herringbone buckling, respectively. Numerical considerations of oblique and herringbone buckling phenomena are dealt with by the spline finite element method (FEM). It is pointed out that the shear stress due to residual strains caused by the rolling process or applied non-uniform loading is the main reason of oblique and herringbone buckle. According to the analysis of stress distribution in plane, the appropriate initial strain patterns are adopted and the corresponding buckling modes are calculated by the spline FEM. The developed numerical model provides an estimation of buckling critical load and wave configuration.展开更多
Continuous steel strip casting lines in rolling miles are under active development.Due to high thermal losses the thin strip is cooling down very fast and therefore a sufficient heating system is necessary before fina...Continuous steel strip casting lines in rolling miles are under active development.Due to high thermal losses the thin strip is cooling down very fast and therefore a sufficient heating system is necessary before final rolling.Only induction heaters can realize the necessary fast heating of the strip and a good energy efEciency of heating.Because of induction heating lines for rolling mills are of extremely high power,all even small improvements in their design and operating modes have significant technical and economical effects.However,the heating lines need an optimal design of the complex induction systems and only numerical simulation is a way to solve the problem.Both two- and threedimensional numerical simulation approaches developed and applied for investigation and design of longitudinal induction heaters are described in the paper.The numerical models have been successfully used for development of modified coils allowing high efficient heating of thinner strip using the same operating frequency.Additionally electrical impedance of the modified coils has been provided on the level necessary for using the existing power supplies and matching equipment.Beside high electrical efficiency,the modified coils improve the temperature distribution over the strip width by increased heating of the strip edges.The optimized and modifies induction coils have been successfully tested in industrial line.展开更多
The effect of recrystallization annealing temperature on the properties and microstructure of one-step cold rolled steel strip for shadow mask was studied. The results showed that there was no yield point elongation w...The effect of recrystallization annealing temperature on the properties and microstructure of one-step cold rolled steel strip for shadow mask was studied. The results showed that there was no yield point elongation when the tensile tests were performed on the samples for annealing temperatures ranging from 750 ℃ to 810 ℃. Moreover, increasing annealing temperature resulted in large grains, which was beneficial to the formability and magnetic property of steel strips. On the other hand, when the sample was annealed at 840 ℃, its microstructure showed ununiforrnity with 0.04 % yield point elongation, which was not good for the function of the shadow mask. Therefore, the proper recrystallization annealing temperature was about 810 ℃ for the present steel strip for shadow mask.展开更多
The study of the interfacial and bond behaviour of reinforced cement-based materials is important for understanding the mechanical behaviour of such composites.This paper presents extensive experimental,theoretical an...The study of the interfacial and bond behaviour of reinforced cement-based materials is important for understanding the mechanical behaviour of such composites.This paper presents extensive experimental,theoretical and finite element analyses of pull-out tests of galvanised steel strips with different geometries,in lightweight cement-based material blocks with different densities and mechanical properties.The theoretical model proposed here is capable of determining the pull-out strength and bond stress versus the slip relationship between components of reinforced cement-based materials.This bond-slip relationship is then implemented in finite element simulation through the user-defined subroutine of ABAQUS software.Based on the results,a trilinear bond-slip model is suitable for modelling the interface between a steel strip and a cement-based material interface.展开更多
The development trend of coated and plated technology for continuous strip steels,which include hot dip plating,electroplating,organic coating and vacuum plating technology,were summarized.
Cold-rolled thin strip steel of high flatness quality undergoes multistage deformation during tension leveling. Thus, the parameters of set-up and manipulating are more difficult. With the aid of FE code MSC. MARC, th...Cold-rolled thin strip steel of high flatness quality undergoes multistage deformation during tension leveling. Thus, the parameters of set-up and manipulating are more difficult. With the aid of FE code MSC. MARC, the tension leveling process of thin strip steel was numerically simulated. Concentrating on the influence of the roll intermeshes in 2# anti-cambering on the distribution and magnitude of residual stresses in leveled strip steel, several experiments were clone with the tension leveler based on the results from the simulation. It was found from the simulation that the magnitude of longitudinal residual stresses in the cross-section of the leveled strip steel regularly presents obvious interdependence with the roll intermeshes in 2# anti-cambering. In addition, there is a steady zone as the longitudinal residual stresses of the surface layers in leveled strip steel vary with the roll intermeshes of 2# anticambering, which is of importance in the manipulation of tension levelers. It was also found that the distribution of strains and stresses across the width of strip steel is uneven during leveling or after removing the tension loaded upon the strip, from which it was found that 3D simulation could not be replaced by 2D analysis because 2D analysis in this case cannot represent the physical behavior of strip steel deformation during tension leveling.展开更多
The static recrystallization kinetics of low carbon steel cast strip was investigated by means of interrupted hot tensile tests. As-cast strip was reheated and soaked and its austenite grain size was similar to the wi...The static recrystallization kinetics of low carbon steel cast strip was investigated by means of interrupted hot tensile tests. As-cast strip was reheated and soaked and its austenite grain size was similar to the width level of the as-cast columnar structure. The tests were carried out on Gleeble-3500 thermomechanical simulator. The deformation temperature is in the range of 800 to 1 200 ℃ with strain rate of 0.01 to 1 s ^-1. The prestrain is fixed at 0. 04 to 0.12, and the inter-hit delay time varies from 1 to 3 000 s. Effect of deformation conditions and initial microstructure on static recrystallization behavior was investigated. The activation energy (Qsrx) and Avrami exponent (n) of static recrystallization were determined to have 241 kJ/mol and 0.54 respectively by linear regression of the experimental results. A kinetics model was proposed to describe the static recrystallization kinetics in low-carbon steel cast strip. The predicted softening fractions are in good agreement with the experimental results, indicating that the proposed equations can give an accurate estimate of the softening behaviors for the low-carbon steel cast strip.展开更多
基金supported by the National High-Tech Research and Development Program of China (No.2003AA33G010)
文摘The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, the delay time varying with the rolling speed was evaded. After a Smith predictor was used to monitor the AGC system, the control laws were deduced for both proportional and integral regulators. The control strategies showed that by choosing the controller parameter P=∞ for both control algo- rithms each regulator could compensate the whole strip gage error in the first control step. The result shows that the integral algo- rithm is more controllable for the system regulating process and has a better steady-state precision than the proportional regulator. Compared with the traditional control strategy, the new control laws have a faster response speed and a hieher steadv-state precision.
文摘The different reflection characteristics of the surface of tin steel strips and the different speeds of the tinning line demand an adaptive illumination light source for online machine vision inspection. This light source can be integrated with a time delay integration charge-coupled device (TDI CCD ) to capture the images of moving objects and facilitate inspection of the surface quality of tin steel strips. On-site application show the effectiveness of the TDI camera with the adaptive illumination light source in detecting the surface defects on tin steel strips of three different materials and with different tin coating weights.
文摘Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental compatibility,the range of coating materials and application properties. Physical vapor deposition(PVD) is an environment-friendly technology and enables nearly unlimited material and process variety.Electron beam high-rate evaporation with deposition rates up to some micrometers per second is the most productive PVD technology for low cost coating.The combination of evaporation with powerful plasma is an efficient way to improve the layer properties.The developed plasma sources can be used for special plasma enhanced chemical vapor deposition(PECVD) processes too. The paper gives an overview about the latest developments in these technologies.Furthermore,the paper explains some examples of new layer stacks onto steel strips.While enhanced corrosion protection can be obtained by magnesium,aluminium or copper containing coatings other functional surface properties come more and more in the focus of interest.For instance,decorative gold colored layers,transparent scratch resistant layers,hard coatings and photo catalytic layers were deposited on running steel strips.Functional layers and layer systems for energy saving and sun energy absorption by solar thermal effects and photo voltaics are under development.The coatings are prepared under the conditions of very high deposition rates using our in-line vacuum coater for metallic strips and sheets with the name MAXI.The influence of the process and plasma parameters on the layer properties were investigated and will be demonstrated for some applications.
文摘An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inherent characteristics of the non-immersed and partially immersed strip in liquid zinc were calculated on the basis of theoretical analysis and numerical simulation, respectively. Multi-parameter fitting of the deviation between results using different methods was performed. To optimize the strip excitation frequency away from the resonance region, on-line vibration control of the strip near the air knife under full product conditions was achieved by changing the field production parameters based on the field test results. The results indicate that although the axial velocity has little effect on the inherent characteristics of the strip compared with other manufacturing parameters such as the steel specifications and tension, it induces external excitations,including moving the aerodynamic load and bearing vibration. To some degree, the vibration near the air knife can be reduced by strengthening the support stiffness of the contact rolls. A total on-line control program of surface quality for continuous hot-dip galvanized pure Zn and galvannealed steel sheet in the cooling section is proposed.
文摘To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex multivariate statistical analysis, and low accuracy and difficulty in mechanical property prediction, an industrial data analysis platform for coiled tubing steel strips production has been preliminarily developed.As the premise and foundation of analysis, industrial data collection, storage, and utilization are realized by using multiple big data technologies.With Django as the agile development framework, data visualization and comprehensive analyses are achieved.The platform has functions including overview survey, stability analysis, comprehensive analysis(such as exploratory data analysis, correlation analysis, and multivariate statistics),precise steel strength prediction, and skin-passing process recommendation.The platform is helpful for production overviewing and prompt responding, laying a foundation for an in-depth understanding of product characteristics and improving product performance stability.
基金financially supported by the Research Fund for the Doctoral Program of Higher Education,China(No.20120006110017)
文摘Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.
基金supported by the National Natural Science Foundation of China(No.51222106)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-011C1)+1 种基金the Major State Basic Research Development Program of China(No.2014CB643300)the Beijing Municipal Commission of Education
文摘The influence of oxide scales on the corrosion behaviors of B510 L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-Fe OOH, Fe3O4, ?-Fe OOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.
基金This work was supported by the Major State Basic Research Development Program of China(973 Program)under the contract number of 2004CB619108the National Natural Science Foundation of China(No.50574018)the NECT-04-0278 Project of the Ministry of Education of China.
文摘In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail. It was found that the strips possessed a fine microstructure compared with the mould cast steels. With increasing phosphorus content more ferrite has been formed with finer grains.
基金supported by the National Natural Science Foundation of China (No. 50434040)
文摘By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter twin-roll strip caster. The results indicate that the microstructure of the strips includes two columnar zones with highly compact dendrites and one equiaxed zone. The characteristics, such as grain size and growing direction of columnar grains and equiaxed grains, were investigated. An additional transitional area with many finer grains between the columnar zone and the equiaxed zone was found. As shown in EBSD analysis, small angle boundaries exist both in the columnar zone and the equiaxed zone, although they are especially more in the transitional area. Additionally, some 〈111〉 twin boundaries were found in the microstructure of the strips.
基金supported by both the National Natural Science Foundation of China under the contract No.59995440the Natural Science Foundation of Liaoning Province under the contract No.2001101021
文摘The M2 high-speed steel strip was produced by using the laboratory scale twin roll strip caster. The microstructure and eutectic carbide morphology of thus produced products were observed and analyzed, and the comparison of those with conventional products was carried out. The effects of the processing parameters such as the melting temperature, the pouring temperature, rolling speed and separating force on the microstructure and eutectic carbide morphology and their distribution were analyzed. The spheroidizing process of the strips in the annealing process was investigated. The relations between the growth and spheroidizing of the eutectic carbide and the annealing technology were obtained, and the mechanism of the twin roll strip casting process improving the eutectic carbide spheroidizing was discussed. The theoretical instruction for determining the subsequent treatment process was provided.
文摘In order to improve the surface quality and properties of AISI 304 stainless steel strip produced with the twinroll strip casting process,the strip was directly cold-rolled. The results show that cold rolling clearly improves the surface roughness,microstructure and properties. Residual δ ferrite is greatly decreased, anisotropy becomes less obvious and corrosion resistance is greatly improved. These results demonstrate the feasibility of directly cold-rolled AISI 304 stainless steel strip.
文摘An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.
文摘Electropulsing-induced recrystallization and its effect on mechanical properties of oriented silicon steel strips (Fe-3.0%Si) were studied by optical microscopy, scanning electron microscopy and electron back-scatter diffraction. The results indicated that electropulsing accelerated recrystallization, and decreased the temperature of recrystallization. Electropulsing favors refinement of the grain structure of the alloy. Effects of electropulsing on strength and elongation of the alloy were discussed from the point view of dislocation dynamics, microstructural changes, and electropulsing kinetics.
基金Item Sponsored by National Natural Science Foundation of China(5107531,50675021)
文摘The tilted waves in steel strip during rolling and leveling of sheet metal can be classified into two different types of buckling, oblique and herringbone buckling, respectively. Numerical considerations of oblique and herringbone buckling phenomena are dealt with by the spline finite element method (FEM). It is pointed out that the shear stress due to residual strains caused by the rolling process or applied non-uniform loading is the main reason of oblique and herringbone buckle. According to the analysis of stress distribution in plane, the appropriate initial strain patterns are adopted and the corresponding buckling modes are calculated by the spline FEM. The developed numerical model provides an estimation of buckling critical load and wave configuration.
文摘Continuous steel strip casting lines in rolling miles are under active development.Due to high thermal losses the thin strip is cooling down very fast and therefore a sufficient heating system is necessary before final rolling.Only induction heaters can realize the necessary fast heating of the strip and a good energy efEciency of heating.Because of induction heating lines for rolling mills are of extremely high power,all even small improvements in their design and operating modes have significant technical and economical effects.However,the heating lines need an optimal design of the complex induction systems and only numerical simulation is a way to solve the problem.Both two- and threedimensional numerical simulation approaches developed and applied for investigation and design of longitudinal induction heaters are described in the paper.The numerical models have been successfully used for development of modified coils allowing high efficient heating of thinner strip using the same operating frequency.Additionally electrical impedance of the modified coils has been provided on the level necessary for using the existing power supplies and matching equipment.Beside high electrical efficiency,the modified coils improve the temperature distribution over the strip width by increased heating of the strip edges.The optimized and modifies induction coils have been successfully tested in industrial line.
文摘The effect of recrystallization annealing temperature on the properties and microstructure of one-step cold rolled steel strip for shadow mask was studied. The results showed that there was no yield point elongation when the tensile tests were performed on the samples for annealing temperatures ranging from 750 ℃ to 810 ℃. Moreover, increasing annealing temperature resulted in large grains, which was beneficial to the formability and magnetic property of steel strips. On the other hand, when the sample was annealed at 840 ℃, its microstructure showed ununiforrnity with 0.04 % yield point elongation, which was not good for the function of the shadow mask. Therefore, the proper recrystallization annealing temperature was about 810 ℃ for the present steel strip for shadow mask.
文摘The study of the interfacial and bond behaviour of reinforced cement-based materials is important for understanding the mechanical behaviour of such composites.This paper presents extensive experimental,theoretical and finite element analyses of pull-out tests of galvanised steel strips with different geometries,in lightweight cement-based material blocks with different densities and mechanical properties.The theoretical model proposed here is capable of determining the pull-out strength and bond stress versus the slip relationship between components of reinforced cement-based materials.This bond-slip relationship is then implemented in finite element simulation through the user-defined subroutine of ABAQUS software.Based on the results,a trilinear bond-slip model is suitable for modelling the interface between a steel strip and a cement-based material interface.
文摘The development trend of coated and plated technology for continuous strip steels,which include hot dip plating,electroplating,organic coating and vacuum plating technology,were summarized.
基金Item Sponsored by Korea Research Foundation (KRF-2004-005-D00111)
文摘Cold-rolled thin strip steel of high flatness quality undergoes multistage deformation during tension leveling. Thus, the parameters of set-up and manipulating are more difficult. With the aid of FE code MSC. MARC, the tension leveling process of thin strip steel was numerically simulated. Concentrating on the influence of the roll intermeshes in 2# anti-cambering on the distribution and magnitude of residual stresses in leveled strip steel, several experiments were clone with the tension leveler based on the results from the simulation. It was found from the simulation that the magnitude of longitudinal residual stresses in the cross-section of the leveled strip steel regularly presents obvious interdependence with the roll intermeshes in 2# anti-cambering. In addition, there is a steady zone as the longitudinal residual stresses of the surface layers in leveled strip steel vary with the roll intermeshes of 2# anticambering, which is of importance in the manipulation of tension levelers. It was also found that the distribution of strains and stresses across the width of strip steel is uneven during leveling or after removing the tension loaded upon the strip, from which it was found that 3D simulation could not be replaced by 2D analysis because 2D analysis in this case cannot represent the physical behavior of strip steel deformation during tension leveling.
基金Item Sponsored by National Natural Science Foundation of China (50801046)Key Project of Science and Technology of Shanghai of China (07DZ11003)Research Fund for Doctoral Program of Higher Education of China (200802481138)
文摘The static recrystallization kinetics of low carbon steel cast strip was investigated by means of interrupted hot tensile tests. As-cast strip was reheated and soaked and its austenite grain size was similar to the width level of the as-cast columnar structure. The tests were carried out on Gleeble-3500 thermomechanical simulator. The deformation temperature is in the range of 800 to 1 200 ℃ with strain rate of 0.01 to 1 s ^-1. The prestrain is fixed at 0. 04 to 0.12, and the inter-hit delay time varies from 1 to 3 000 s. Effect of deformation conditions and initial microstructure on static recrystallization behavior was investigated. The activation energy (Qsrx) and Avrami exponent (n) of static recrystallization were determined to have 241 kJ/mol and 0.54 respectively by linear regression of the experimental results. A kinetics model was proposed to describe the static recrystallization kinetics in low-carbon steel cast strip. The predicted softening fractions are in good agreement with the experimental results, indicating that the proposed equations can give an accurate estimate of the softening behaviors for the low-carbon steel cast strip.