期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Variations in chlorophyll content, stomatal conductance, and photosynthesis in Setaria EMS mutants 被引量:1
1
作者 TANG Chan-juan LUO Ming-zhao +5 位作者 ZHANG Shuo JIA Guan-qing TANG Sha JIA Yan-chao ZHI Hui DIAO Xian-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1618-1630,共13页
Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and... Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and high transformation efficiency,has been widely accepted as a model in photosynthesis and drought-tolerance research.The current study characterized Chl content,G_s,and P_n of 48 Setaria mutants induced by ethyl methanesulfonate.A total of 24,34,and 35 mutants had significant variations in Chl content,G_s,and P_n,respectively.Correlation analysis showed a positive correlation between increased G_s and increased P_n,and a weak correlation between decreased Chl b content and decreased P_n was also found.Remarkably,two mutants behaved with significantly decreased Chl b content but increased P_n compared to Yugu 1.Seven mutants behaved with significantly decreased G_s but did not decrease P_(n )compared to Yugu 1.The current study thus identified various genetic lines,further exploration of which would be beneficial to elucidate the relationship between Chl content,G_s,and P_n and the mechanism underlying why C_4 species are efficient at photosynthesis and water saving. 展开更多
关键词 photosynthetic capacity chlorophyll content stomatal conductance EMS mutant variation Setaria italica
下载PDF
Response of stomatal conductance of two tree species to vapor pressure deficit in three climate zones 被引量:4
2
作者 Jing LI XiaoMing LI 《Journal of Arid Land》 SCIE CSCD 2014年第6期771-781,共11页
Stomatal behavior is a central topic of plant ecophysiological research under global environmental change. However, the physiological mechanism controlling the response of stomata to vapor pressure deficit (VPD) or ... Stomatal behavior is a central topic of plant ecophysiological research under global environmental change. However, the physiological mechanism controlling the response of stomata to vapor pressure deficit (VPD) or relative humidity (RH) has been inadequately understood till now. In this study, responses of stomatal conduc- tance (gs) to VPD in two species of trees (Fraxinus chinensis Roxb., Populus alba L. var. pyramidalis Bge.)in three different climate zones (Jinan with typical warm humid/semi-humid climate, Urumqi with temperate continental arid climate and Turpan with extreme arid desert climate) were measured. Levels of two phytohormones (abscisic acid, ABA; indole-3-acetic acid, IAA) in the leaves of the two tree species at these three sites were also measured by high performance liquid chromatography. The results showed that the responses of gs to an increasing VPD in these two tree species at the three sites had peak curves which could be fitted with a Log Normal Model (gs=a.exp(-O.5(In(DIc)lb)2). The VPD/RH values corresponding to the maximum g, can be calculated using the fitting models for the two tree species in the three sites. We found that the calculated g, -VPD correlated nega- tively with relative air humidity in the three sites during the plant growth period (April to October 2010), which showed the values of g,-max-VPD were related to the climate conditions. The prevailing empirical stomatal model (Leuning model) and optimal stomatal behavior model could not properly simulate our measured data. The water use efficiency in the two tree species did not show obvious differences under three very different climatic conditions, but the highest gs, photosynthetic and transpiration rates occurred in P. alba var. of Turpan. The sensitivity in re- sponse of g~ to VPD in leaves of the two trees showed positive correlations with the concentration of ABA, which implied that ABA level could be used as an indicator of the sensitivity of stomatal response to VPD. Our results confirmed that the prediction of the response of gs to VPD might be incomplete in the two current popular models. Therefore, an improved g, model which is able to integrate the results is needed. Also, the stomatal response mechanism of single peak curves of g~ to VPD should be considered. 展开更多
关键词 abscisic acid relative humidity stomatal conductance stomatal model vapor pressure deficit
下载PDF
Drought-Induced Changes in Xylem Sap pH, ABA and Stomatal Conductance 被引量:2
3
作者 GUOXiu-lin LIUZi-hui +1 位作者 Razzaq LIGuang-min 《Agricultural Sciences in China》 CAS CSCD 2004年第7期496-501,共6页
Upstream signals potentially regulating evaporation and stomatal conductance wereinvestigated using 6-8-leaf-old maize (Zea may L.) seedlings which were grown in agreenhouse. Pressure chamber was used to measure leaf ... Upstream signals potentially regulating evaporation and stomatal conductance wereinvestigated using 6-8-leaf-old maize (Zea may L.) seedlings which were grown in agreenhouse. Pressure chamber was used to measure leaf water potential and to collectxylem sap. The pH of xylem sap in stems was higher than that in root, and the abscisicacid (ABA) concentration in stems was the highest in well-watered seedlings. The ABAconcentration and pH of xylem sap in roots, stems and leaves increased, and the ABAconcentration in leaves reached the maximum during drought stress. The treatment ofroots with exogenous ABA solution (100molL-1) increased xylem sap ABA concentration inall organs measured, and induced stomatal closure, but did not change ABA distributionamong organs of maize seedlings. The combined effects of external pH buffer on pH, ABAof xylem sap and stomatal behavior indicated that pH, as a root-source signal to leavesunder drought stress, regulated stomatal closure through accumulating ABA in leaves orguard cells. 展开更多
关键词 DROUGHT Abscisic acid PH Xylem sap SIGNAL stomatal conductance
下载PDF
Study on Transpiration and Stomatal Conductance Characteristics of C3 and C4 Plant 被引量:1
4
作者 MENG Jinghui LU Yuanchang +1 位作者 Ronald Kohne LIU Gang 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第4期1-8,共8页
The transpiration experiment was done under greenhouse conditions with a C3 plant sweet pepper (Capsicum annuum Linn.) and two C4 plants, sorghum (Sorghum bicolor L.Moench) and maize (Zea mays Linn.). Three spec... The transpiration experiment was done under greenhouse conditions with a C3 plant sweet pepper (Capsicum annuum Linn.) and two C4 plants, sorghum (Sorghum bicolor L.Moench) and maize (Zea mays Linn.). Three species were irrigated with three different water treatment levels of 100%, 66% and 33% which gave a comparison of tolerance and adaptation to irrigation and two different levels of water stress. The measurements of transpiration rate and stomatal conductance were done between 8.00 a.m. and 16.00 p.m. with measurements about each 1.5 h with an infrared gas analyzer. The results showed that Z. mays probably due to a higher leaf area had very low values and was significantly different (LSD pairwise comparison) from C. annuum and S. bicolor. The hypotheses that C4 plants and C3 plants have different transpiration rates and stomatal conductance could not be shown with the results. However, the hypotheses that for the same species, the highest values in transpiration rate and stomatal conductance were with the 100% irrigation treatment and the lowest values were with the 33% irrigation treatment could be accepted due to the results of this trial. 展开更多
关键词 transpiration rate stomatal conductance water stress
下载PDF
Responses of leaf stomatal and mesophyll conductance to abiotic stress factors 被引量:1
5
作者 LI Sheng-lan TAN Ting-ting +9 位作者 FAN Yuan-fang Muhammad Ali RAZA WANG Zhong-lin WANG Bei-bei ZHANG Jia-wei TAN Xian-ming CHEN Ping Iram SHAFIQ YANG Wen-yu YANG Feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第10期2787-2804,共18页
Plant photosynthesis assimilates CO_(2)from the atmosphere,and CO_(2)diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.The stomatal and mesophyll conductance of plants are sensitive to ab... Plant photosynthesis assimilates CO_(2)from the atmosphere,and CO_(2)diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.The stomatal and mesophyll conductance of plants are sensitive to abiotic stress factors,which affect the CO_(2)concentrations at carboxylation sites to control photosynthetic rates.Early studies conducted relevant reviews on the responses of stomatal conductance to the environment and the limitations of mesophyll conductance by internal structure and biochemical factors.However,reviews on the abiotic stress factors that systematically regulate plant CO_(2)diffusion are rare.Therefore,in this review,the rapid and long-term responses of stomatal and mesophyll conductance to abiotic stress factors(such as light intensity,drought,CO_(2)concentration and temperature)and their physiological mechanisms are summarized.Finally,future research trends are also investigated. 展开更多
关键词 CO_(2)diffusion abiotic stress factors stomatal conductance mesophyll conductance
下载PDF
Hydraulic role in differential stomatal behaviors at two contrasting elevations in three dominant tree species of a mixed coniferous and broad-leaved forest in low subtropical China
6
作者 Liwei Zhu Tianyu Fu +4 位作者 Jie Du Weiting Hu Yanqiong Li Xiuhua Zhao Ping Zhao 《Forest Ecosystems》 SCIE CSCD 2023年第1期102-112,共11页
Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-r... Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-related functional traits were examined for three dominant tree species, Schima superba, Pinus massoniana and Castanopsis chinensis, in a mixed coniferous and broad-leaved forest at two elevations(70 and 360 m above sea level,respectively) in low subtropical China. We hypothesized that trees at higher elevations would develop more efficient strategies of stomatal regulations and greater water transport capacity to cope with more variable hydrothermal conditions than those at lower elevations. Results show that the hydraulic conductivity did not differ between trees at the two elevations, contrary to our expectation. The C. chinensis trees had greater values of leaf mass per unit area(LMA), and the S. superba and C. chinensis trees had greater values of wood density(WD),relative stem water content(RWC), and ratio of sapwood area to leaf area(Hv) at the 360-m elevation than at 70-m elevation. The mean canopy stomatal conductance was greater and more sensitive to vapor deficit pressure at360 m than at 70 m for both S. superba and C. chinensis, while stomatal sensitivity did not differ between the two contrasting elevations for P. massoniana. The midday leaf water potential(ψL) in P. massoniana was significantly more negative at 360 m than at 70 m, but did not vary with increasing elevation in both S. superba and C. chinensis.Variations in Hvcan be related to the differential stomatal behaviors between the two elevations. The variations of stomatal behavior and ψLwith elevation suggested the isohydric strategy for the two broad-leaved species and the anisohydric strategy for the conifer species. The species-specific differences in LMA, WD, RWC, and Hvbetween the two elevations may reflect conservative resource use strategies at the higher elevation. Our findings revealed a close relationship between hydraulic and stomatal behavior and may help better understand the functional responses of forests to changing environmental conditions. 展开更多
关键词 Sap flux stomatal conductance Leaf water potential Vapor pressure deficit ELEVATION Low subtropical China
下载PDF
Gas flaring cause shifts in mesophyll and stomatal functional traits of Betula pubescens Ehrh.
7
作者 Dina A.Ronzhina Svetlana V.Migalina Irek A.Yusupov 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期2079-2087,共9页
In petroleum-producing territories of West Siberia(Russia),oil well gas flares have a thermal effect on nearby plant communities.Such communities can be used as models for studying plant acclimation to global warming.... In petroleum-producing territories of West Siberia(Russia),oil well gas flares have a thermal effect on nearby plant communities.Such communities can be used as models for studying plant acclimation to global warming.In the present study on the effect of the hydrothermal regime at the flare sites on mesophyll and stomatal functional traits of Betula pubescens,leaves were collected from trees at250 m(control site[CS]),200,150 and 100 m(maximum impact site[MIS])from a flare.From the CS to MIS site,the average annual air temperature increased by 0.5℃and bog water level decreased by 17 cm.On plants from the MIS,stomata were 16%smaller and density was 20%lower compared to those at the CS,resulting in lower maximum stomatal conductance in plants from the MIS(mean±SE:MIS 0.84±0.05 mol·m^(-2)s^(-1),CS 1.24±0.06 mol·m^(-2)s^(-1);F=12.6,P<0.01).Mesophyll cell volume was 1.9 times lower at MIS than at CS.Chloroplast numbers per cell also declined with distance from the flares,from 21(MIS)to18(CS;F=15.6,P<0.001),and chloroplast volume was 24%higher at the CS,whereas the number of mesophyll cells and chloroplasts numbers per unit leaf area were 1.9 and 1.8 times higher at the MIS than at the CS,respectively.As a result,leaves from the MIS had a large total mesophyll cell(Ames/A)and chloroplast(Achl/A)surface area per unit leaf area,resulting in a 46%increase in mesophyll conductance in plants from the MIS.Thus,structural changes in leaf epidermis consisted of a decrease in stomatal size and number,could lower transpiration losses with higher temperatures and less water.To compensate for the reduction in leaf conductance due to a decrease in stomatal conductance under these conditions,an increase in the number of mesophyll cells and chloroplasts per unit area provides a greater gas-exchange area and mesophyll conductance. 展开更多
关键词 Leaf traits Mesophyll cell volume Chloroplast numbers Mesophyll conductance stomatal conductance
下载PDF
CO_2, H_2O exchange and stomatal regulation of regenerated Camptotheca acuminata plantlets during ex vitro acclimatization 被引量:1
8
作者 WANG Hui-mei LI Yan-hua GAO Yin-xiang ZU Yuan-gang 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第4期273-276,共4页
For finding the changes in CO2, H20 exchange and their stomatal regulation during ex vitro acclimatization of regenerated Camptotheca acuminata plantlets, the net photosynthesis rate (Pn), respiration rate (Ro), l... For finding the changes in CO2, H20 exchange and their stomatal regulation during ex vitro acclimatization of regenerated Camptotheca acuminata plantlets, the net photosynthesis rate (Pn), respiration rate (Ro), light compensation point (Lc) and light saturation point (Ls), transpiration rate (Tr), stomatal conductance (gs) and water use efficiency(WUE) were measured during 37 days of ex vitro acclimatization. The results showed that Pn sharply increased until 29 days, then slightly decreased. A substantial decrease in Lc and a substantial increase of Ls in the former two weeks were observed, indicating the light regime enlargement for effective leaf photosynthesis. Tr and gs abruptly decreased during the first week then linearly increased until 29days ex vitro acclimatization, reflecting the strong regulation effect of stomata on water changes of ex vitro acclimating plantlets. Stomatal regulation effect on CO2 exchange was different from that on water exchange, i.e. P, was almost independent of gs during the first week, while P. was significantly correlated with gs thereafter (i.e. dual patterns). Different from dual patterns of gs-Pn relation, the Tr monotonously linearly increased with gs. Furthermore, WUE was almost independent on gs during the first week, while a marked decreasing tendency with gs was found thereafter. At the beginning of the acclimatization, WUE was mainly determined by photosynthetic capacity, while transpiration becomes a main determinant factor for WUE from 7 to 37 days' acclimatization. 展开更多
关键词 Camptotheca acuminate ACCLIMATIZATION Photosynthesis TRANSPIRATION Water use efficiency Relation between stomatal conductance (gs) and net photosynthesis rate (Pn) gs-WUE relation
下载PDF
The Relationship Between Stomatal Movement and Light Intensity Gradient in Three Dendrobium Species Compared with Typical CAM Plants
9
作者 Jianwu REN Bin CAI +3 位作者 Xiangwei HE Hongjun YAO Shengjie DU Fengnan SHANG 《Agricultural Biotechnology》 CAS 2015年第2期28-32,共5页
There is a close relationship between crassulacean acid metabolism and drought tolerance,and a great number of landscape plants which consume less water are necessary to build economic garden.In order to provide the b... There is a close relationship between crassulacean acid metabolism and drought tolerance,and a great number of landscape plants which consume less water are necessary to build economic garden.In order to provide the basis for selecting drought-tolerant landscape plants,five species of plants were employed,including Dendrobium chrysotoxum,D.nobile,D.primulinum,Kalanchoblossfeldiana and K.daigremontiana.Exposed to different intensities of light,various samples were collected.The slices were prepared via different techniques.Stomatal movements and stomatal complex structures were observed by scanning electronic microscope and confocal laser scanning microscope.The results indicated that the slices made rapidly from fresh leaves were conductive to inspecting actual stomatal movements and stomatal complex structures as soon as possible.It was found that the stomatal movement of K.daigremontiana,K.blossfeldiana and D.primulinum displayed typical characteristics of crassulacean acid metabolism,while that of D.chrysotoxum and D.nobile did not exhibited obvious characteristics of crassulacean acid metabolism. 展开更多
关键词 Dendrobium stomatal drought displayed metabolism landscape Species garden length conductive
下载PDF
Ecophysiology and multivariate analysis for production of Tachigali vulgaris in Brazil:Influence of rainfall seasonality and fertilization
10
作者 Pedro Henrique Oliveira Simoes Candido Ferreira de Oliveira Neto +3 位作者 Manoel Tavares de Paula Dênmora Gomes de Araújo Rodrigo Silva do Vale Joao Olegário Pereira de Carvalho 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1289-1305,共17页
Studies on fertilization management of species native to the Amazon for energy plantations contribute to the diversity of species use and reduce biological risk due to the excessive use of clones or hybrids of Eucalyp... Studies on fertilization management of species native to the Amazon for energy plantations contribute to the diversity of species use and reduce biological risk due to the excessive use of clones or hybrids of Eucalyptus.This study evaluates the effect of precipitation seasonality and phosphorus and potassium fertilization on gas exchange in a Tachigali vulgaris plantation.Three levels of P(zero,65.2,130.4 kg ha^(-1))and three of K(zero,100.0,200.0 kg ha^(-1))were applied in a 3×3 factorial randomized block design.Gas exchange measurements were conducted in April and November 2018.In low rainfall,high irradiance period,photo synthetic rates were up to four times higher than in the high rainfall period,reaching 20.3μmol m^(-2)s^(-1)in the treatment with 130.4 g kg^(-1)of P and 100.0 g kg^(-1)of K.Factor analysis and principal component analysis reduced the initial eight gas exchange variables to two and three principal components in periods of high and low rainfall,respectively.The multivariate method used in this study readily identified variations in the variables as a function of rainfall,with high reliability in explaining the data set. 展开更多
关键词 Photosynthesis rate stomatal conductance Principal component analysis Factor analysis Tachigali vulgaris
下载PDF
Morphological and physiological responses to drought stress of carob trees in Mediterranean ecosystems
11
作者 Khouloud ZAGOUB Khouloud KRICHEN +1 位作者 Mohamed CHAIEB Lobna F MNIF 《Journal of Arid Land》 SCIE CSCD 2023年第5期562-577,共16页
The greatest failure rate of reforestation programs is basically related to water deficit,especially at the seedling stage.Therefore,the main objective of this work is to investigate the responses of three accessions ... The greatest failure rate of reforestation programs is basically related to water deficit,especially at the seedling stage.Therefore,the main objective of this work is to investigate the responses of three accessions of carob trees(Ceratonia siliqua L.)with 2-year-old from different climate regions to drought generated by four water treatments:Tc(250 mm),T1(180 mm),T2(100 mm),and T3(50 mm).The first accession(A1)comes from the protected national park of Ichkeul in northern Tunisia.This zone belongs to the bioclimatic sub-humid stage.The second accession(A2)comes from Melloulech,located in the center-east of Tunisia,belonging to the bioclimatic semi-arid stage.The third accession(A3)comes from the mountain of Matmata,located in the south of Tunisia,belonging to the bioclimatic hyper-arid stage.The experiment was undertaken in a greenhouse.Gaz exchange indices(net photosynthesis(A),stomatal conductance(gs),transpiration rate(E),and internal CO_(2) concentration(Ci))were determined.Predawn(Ψpd)and midday(Ψmd)leaf water potentials,relative soil water content(SWC),and morphological parameters(plant height(H),number of leaves(NL),number of leaflets(Nl),and number of branches(NB))were estimated.The results showed that significant differences(P<0.001)were found between physiological and morphological parameters of each accession.The highest growth potential was recorded for Tc treatment in both accessions A1 and A2.Significant decreases in gs,E,Ci,and SWC were recorded with the increases in water stress applied from treatment T1 to T3.Positive and significant correlations were found between SWC andΨpd for all studied accessions.Ψpd andΨmd decreased as water stress increased,ranging from–0.96 to–1.50 MPa at sunrise and from–1.94 to–2.83 MPa at midday,respectively,under control and T3 treatments.C.siliqua accessions responded to drought through exhibiting significant changes in their physiological and morphological behavior.Both accessions A1 and A2 showed greater drought tolerance than accession A3.These seedlings exhibit different adaptive mechanisms such as stress avoidance,which are aimed at reducing transpiration,limiting leaf growth,and increasing root growth to exploit more soil water.Therefore,C.siliqua can be recommended for the ecological restoration in Mediterranean ecosystems. 展开更多
关键词 Ceratonia siliqua L. water stress soil moisture stomatal conductance predawn leaf water potential minimum water potential
下载PDF
The effect of ozone on pine forests in South-Eastern France from 2017 to 2019
12
作者 Anumol Shashikumar Svetlana Bičárová Dalstein-Richier Laurence 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期301-315,共15页
In South-Eastern forests of France,risks linked to the effects of tropospheric ozone(O_(3))are real;its annual impact has been observed specifically near the coastline and in high altitude mountains during the period ... In South-Eastern forests of France,risks linked to the effects of tropospheric ozone(O_(3))are real;its annual impact has been observed specifically near the coastline and in high altitude mountains during the period 2017-2019.In this study,the risk assessment of O_(3)pollutant was carried out using two approaches based on forest response indicators such as O_(3)specific foliar visible injury and by stomatal O_(3)flux.Phytotoxic O_(3)dose values(POD_(0))were obtained by the DO_(3)SE model.The model requires hourly O_(3)concentration for POD_(0)calculation.A modified approach that uses measurements from passive samplers(monthly average O_(3)concentration)was tested for the calculation of POD_(0)and test results showed good agreement with the POD_(0)calculated using hourly O_(3)data.In the model input file,the average O_(3)concentration is used for POD_(0),and this could be useful for POD_(0)calculation when the active monitor is limited.In this study,a flux-based assessment provided better correlation with O_(3)specific leaf injury,which is also species-specific.Foliar visible injury in response to O_(3)indicates that Pinus cembra and Pinus halepensis are more affected and therefore more sensitive than Pinus sylvestris.The POD_(0)and stomatal conductance(Gsto)seem to be induced by environmental factors,primarily rainfall and the soil water potential(fSWP).The correlation between the O_(3)flux metric and environmental variables with forest response indicators by Spearman rank test confirms P.cembra as one of the most sensitive species to O_(3). 展开更多
关键词 OZONE Foliar visible injury Phytotoxic ozone dose stomatal conductance DO_(3)SE
下载PDF
Effect of Water Deficit Stress on Photosynthetic Characteristics of Jatropha curcas
13
作者 Kesego Makholwa Baleseng Moseki Goitseone Malambane 《American Journal of Plant Sciences》 CAS 2023年第1期104-112,共9页
The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of... The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of high fossil fuel consumption which plays a pivotal role in the greenhouse effect, Jatropha curcas biodiesel has been considered a potential alternative source of clean energy (biodiesel is carbon neutral). However, the ability of Jatropha curcas, as a candidate source of alternative of clean energy, to grow in marginal and dry soils, has been poorly elucidated. This study, therefore aimed at investigating whether Jatropha curcas leaves could switch from carrying out C<sub>3</sub> photosynthetic pathway to Crassulacean Acid Metabolism (CAM) as a strategy to improve its water deficit tolerance. Thirty-five-day-old Jatropha curcas accessions, from three different climatic zones of Botswana, viz., Mmadinare (Central zone), Thamaga (Southern zone) and Maun (Northern zone), were subjected to water stress, by with-holding irrigation with half-strength Hoagland culture solution. Net photosynthetic rate, transpiration and stomatal conductance were measured at weekly intervals. The leaf pH was measured to determine whether there was a decrease in pH (leaf acidification) of the leaves during the night, when the plants experienced water deficit stress. All the accessions exhibited marked reduction in all the measured photosynthetic characteristics when experience water deficit stress. However, a measurable CO<sub>2</sub> uptake was carried out by leaves of all the accessions, in the wake of marked decreases in stomatal conductance. There is evidence to suggest that when exposed to water stress J. curcas accessions switch from C<sub>3</sub> mode of photosynthesis to CAM photosynthetic pathway. This is attested to by the slightly low leaf pH at night. Thamaga accession exhibited an earlier stomatal closure than the other two accessions. This resulted in Thamaga accession displaying a slightly lower dry weight than both Mmadinare and Maun accessions. It could be concluded that Jatropha curcas appeared to tolerate water deficit stress due to its ability of switching from C<sub>3</sub> photosynthetic pathway to the CAM photosynthetic pathway, but with a cost to biomass accumulation, as demonstrated by slightly more reduced CO<sub>2</sub> assimilation by Thamaga accession, than the other two accessions. 展开更多
关键词 Jatropha curcas BIODIESEL Crassulacean Acid Metabolism Net Photosynthetic Rate stomatal conductance
下载PDF
番茄白粉病对番茄叶片光合特性的影响(英文) 被引量:1
14
作者 吴昊 董华芳 许延波 《Plant Diseases and Pests》 CAS 2011年第2期9-11,21,共4页
[ Objective ] The paper was to explore the pathogenic mechanism of tomato powdery mildew, and to study the effects of the disease on photosynthetic characteristics of tomato. [ Method ] With four tomato varieties as m... [ Objective ] The paper was to explore the pathogenic mechanism of tomato powdery mildew, and to study the effects of the disease on photosynthetic characteristics of tomato. [ Method ] With four tomato varieties as materials, the pathogen of tomato powdery mildew was artificially inoculated. After the varieties were infected, the parameters including net photosynthetic rate, stomatal conductance and transpiration rate of tomato leaf were measured by Li-6400 portable photo- synthesis detector under natural lighting conditions. [ Result] The net photosynthetic rate, stomatal conductance and transpiration rate of four tomato varieties all decreased after infection. However, the decrease extent of these parameters of four varieties was different. The parameters of seriously damaged Jinyangdajuxdng ( No. 4) and Xinsheng No. 1 ( No. 5 ) decreased greatly, while the parameters of slightly damaged Lujia ( No. 13 ) and improved 98-6 decreased lightly. [ Condu- sion] The results could provide theoretical basis for the study on pathogenic mechanism, new prevention way and resistance breeding of tomato powdery mildew. 展开更多
关键词 Tomato powdery mildew Net photosynthetic rate stomatal conductance Transpiration rate
下载PDF
Improving Water Use Efficiency of Wheat Crop Varieties in the North China Plain: Review and Analysis 被引量:11
15
作者 MEI Xu-rong ZHONG Xiu-li +1 位作者 Vadez Vincent LIU Xiao-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第7期1243-1250,共8页
The North China Plain (NCP), one of the most important agricultural regions in China, is facing a major water-resource crisis evoked by excessive exploitation of groundwater. To reduce water use while maintaining hi... The North China Plain (NCP), one of the most important agricultural regions in China, is facing a major water-resource crisis evoked by excessive exploitation of groundwater. To reduce water use while maintaining high crop production level, improving variety water use efficiency (WUE) is an urgent need, especially because other water-saving measures such as water delivery, irrigation, and agricultural practices have already achieved most possible progresses. Evaluation of variety WUE can be performed accurately at the individual plant level (WUEp). Reviewing the studies on physiological factors affecting WUE p performed up to date, stomatal conductance was considered to be an important trait associating closely with WUE p . The trait showed a large degree of varietal variability under well-watered conditions. Crop varieties differ highly in sensitivity of stomata to soil and air drying, with some varieties strongly reducing their stomatal conductance in contrast with those lightly regulating their stomata. As a result, difference among varieties in WUE p was enlarged under water deficit conditions in contrast with those under well-watered conditions. The relationship between stomatal conductance and yield depends on water availability of whole growing period in local areas. Usually, large stomatal conductance results in a high yield under good irrigation system, whereas a low stomatal conductance can lead to yield benefit under limited stored soil moisture conditions. In the NCP, winter wheat is the largest consumer of irrigation water, improvement strategies for high WUE aiming at wheat crops are in urgent need. We suggest, for the well-irrigated areas with excessive exploitation of groundwater, the wheat breeding program need to combine medium stomatal conductance (0.35 mmol H2O m-2 s-1 or so), high carboxylation efficiency, and high harvest index. Areas with partial/full access to irrigation, or infrequent drought, should target wheat varieties with high stomatal conductance under no water stress and low sensitivity of stomata to soil water deficit. Drought-prone rain-fed areas characterized by frequent and long terminal drought should target wheat varieties with low stomatal conductance under no water stress and high stomata sensitivity to soil drying to make water available during grain filling. 展开更多
关键词 water use efficiency YIELD stomatal conductance water deficit
下载PDF
Use of infrared thermal imaging to diagnose health of Ammopiptanthus mongolicus in northwestern China 被引量:6
16
作者 Weijie Yuan Yi Yu +3 位作者 Yongde Yue Ji Wang Fengchun Zhang Xiaohong Dang 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期605-612,共8页
Population of the rare and endangered species Ammopiptanthus mongolicus (Maxim.) Cheng f. declined rapidly in China's add region and Central Asia. There is an urgent need to protect this species, which is particula... Population of the rare and endangered species Ammopiptanthus mongolicus (Maxim.) Cheng f. declined rapidly in China's add region and Central Asia. There is an urgent need to protect this species, which is particularly important in maintaining biodiversity throughout the arid region of northwestern China. By analyzing the infrared thermal images based on plant-transpiration transfer coef- ficient (hat) and photosynthetic parameters, we made quantitative and accurate diagnoses of the plant growth and health status of A. mongolicus. Using an LI-COR6400 photosynthesis system, we measured the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr). Infrared thermal images obtained in the field were processed by ENVI4.8 software to calculate surface tem- peratures of the plant subjects. We found that the plant transpiration transfer coefficient of A. mongolicus was inthe order of old plants 〉young plants 〉intermediate-aged plants. Declining health levels of young, intermediate, and old plants were divided into three categories: 〈0.4, 0.4-0.7, and 〉0.7. The coefficient showed a significant negative correlation with Tr, Gs, and Pn, indicating that they can simultaneously reflect the state of plant growth. By estab- lishing hat and photosynthetic parameters in regression model Y = a-blnx, we can accurately diagnose plant growth and decline of plant health conditions. 展开更多
关键词 Photosynthetic parameters Plant stress stomatal conductance THERMOGRAPHY Three-temperature(3T) model Plant-transpiration transfer coefficient
下载PDF
Gas exchange of Populus euphratica leaves in a riparian zone 被引量:5
17
作者 Dieter OVERDIECK Daniel ZICHE RuiDe YU 《Journal of Arid Land》 SCIE CSCD 2013年第4期531-541,共11页
Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance... Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance in relation to resource supply is needed.We estimated productivity related functional traits at the edges of the habitat of Populus euphratica Oliv.Specific leaf area (SLA) and carbon/nitrogen (C/N) ratio of P.euphratica leaves growing near a former river bank and close to moving sand dunes in the Ebinur Lake National Nature Reserve in Xinjiang,Northwest China (near Kazakhstan) were determined and daily courses of CO2 net assimilation (PN),transpiration (E),and stomatal conductance (gs) of two consecutive seasons were measured during July-August 2007 and June-July 2008.Groundwater level was high (1.5-2.5 m below ground) throughout the years and no flooding occurred at the two tree stands.SLA was slightly lower near the desert than at the former river bank and leaves contained less N in relation to C.Highest E and gs of P.euphratica were reached in the morning before noon on both stands and a second low maximum occurred in the afternoon despite of the unchanged high levels of air to leaf water vapor pressure deficit (ALVPD).Decline of gs in P.euphratica was followed by decrease of E.Water use efficiency (WUE) of leaves near the desert were higher in the morning and the evening,in contrast to leaves from the former river bank that maintained an almost stable level throughout the day.High light compensation points and high light saturation levels of PN indicated the characteristics of leaves well-adapted to intensive irradiation at both stands.In general,leaves of P.euphratica decreased their gs beyond 20 Pa/kPa ALVPD in order to limit water losses.Decrease of E did not occur in both stands until 40 Pa/kPa ALVPD was reached.Full stomatal closure of P.euphratica was achieved at 60 Pa/kPa ALVPD in both stands.E through the leaf surface amounted up to 30% of the highest E rates,indicating dependence on water recharge from the ground despite of obviously closed stomata.A distinct leaf surface temperature (Tleaf) threshold of around 30℃ also existed before stomata started to close.Generally,the differences in gas exchange between both stands were small,which led to the conclusion that micro-climatic constraints to E and photosynthesis were not the major factors for declining tree density with increasing distance from the river. 展开更多
关键词 Populus euphratica water vapor pressure deficit TRANSPIRATION stomatal conductance water use efficiency leaf functional traits
下载PDF
Competition between Populus euphratica and Tamarix ramosissima seedlings under simulated high groundwater availability 被引量:4
18
作者 WU Guilin JIANG Shaowei +2 位作者 LIU Weiyang ZHAO Chengyi LI Jun 《Journal of Arid Land》 SCIE CSCD 2016年第2期293-303,共11页
Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known ab... Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known about the effects of high water availability on plant community structuring. We conducted a mesocosm experiment to test whether seedling competition under simulated high groundwater availability can explain the shift of co-dominance of Populus euphratica and Tamarix ramosissima in early communities to P. euphratica dominance in mature ones along the Tarim River in northwestern China. Seedlings of these two plant species were grown in monoculture and mixture pools with high groundwater availability. Results indicated that the above-ground biomass and relative yield of T. ramosissima were higher than those of P. euphratica. The competitive advantages of T. ramosissima included its rapid response in growth to groundwater enrichment and its water spender strategy, as evidenced by the increased leaf biomass proportion and the inert stomatal response to leaf-to-air vapor pressure deficit (VPD). In comparison, P. euphratica showed a conservative strategy in water use, with a sensitive response to leaf-to-air VPD. Result of the short-term competition was inconsistent with the long-term competition in fields, suggesting that competition exclusion is not the mechanism structuring the desert riparian plant communities. Thus, our research highlights the importance of mediation by environmental fluctuations (such as lessening competition induced by disturbance) in structuring plant communities along the Tarim riparian zones. 展开更多
关键词 community succession vapor pressure deficit (VPD) stomatal conductance riparian plant water usestrategy
下载PDF
Hydraulic resistance partitioning between shoot and root system and plant water status of Haloxyolon ammodendron growing at sites of contrasting soil texture 被引量:4
19
作者 Xu, GuiQing Li, Yan Zou, Ting 《Journal of Arid Land》 SCIE 2010年第2期98-106,共9页
关键词 hydraulic architecture leaf water potential TRANSPIRATION hydraulic resistance stomatal conductance hydraulic limitation
下载PDF
Gas exchange and water relations of young potted loquat cv.Algerie under progressive drought conditions 被引量:3
20
作者 A.Stellfeldt M.A.Maldonado +1 位作者 J.J.Hueso J.Cuevas 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第6期1360-1368,共9页
Relationships between plant water status and gas exchange parameters at increasing levels of water stress were determined in Algerie loquats which grown in 50 I pots. Changes in soil water content and stem water poten... Relationships between plant water status and gas exchange parameters at increasing levels of water stress were determined in Algerie loquats which grown in 50 I pots. Changes in soil water content and stem water potential and their effects on stomatal conductance (Gs ) and net photosynthesis (Pn) rate were followed in control plants and in plants without irrigation until the latter reached near permanent wilting point and some leaf abscission took place. Then, the irrigation was restarted and the comparison repeated. Soil water content and stem water potential gradually diminished in response to drought reaching the minimum values of 0.9 mm and -5.0 MPa, respectively, 9 days after watering suspension. Compromised plant water status had drastic effects on Gs values that dropped by 97% in the last day of the drought period. Pn was diminished by 80% at the end of the drought period. The increasing levels of water stress did not cause a steady increase in leaf temperature in non-irrigated plants. Non-irrigated plants wilted and lost some leaves due to the severity of the water stress. However, all non-irrigated plants survived and reached similar Pn than control plants just a week after the irrigation was restarted, confirming drought tolerance of loquat and suggesting that photosynthesis machinery remained intact. 展开更多
关键词 Eriobotrya japonica deficit irrigation stem water potential net photosynthetic rate stomatal conductance
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部