期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
Stress distribution in roadbeds of slab tracks with longitudinal discontinuities 被引量:1
1
作者 Qingzhi Ye Qiang Luo +2 位作者 Guishuai Feng Tengfei Wang Hongwei Xie 《Railway Engineering Science》 2023年第1期61-74,共14页
Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud ... Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud pumping.Although the higher stress due to the discontinuities of track structures has been discussed in past studies,few focused on the stress response of roadbeds in slab tracks and quantitatively characterized the stress pattern.In this paper,we performed a dynamic finite element analysis of a track-formation system,incorporating expansion joints as primary longitudinal discontinuities.The configurations of CRTS Ⅲ slab tracks and the contact conditions between concrete layers were considered.Numerical results show that longitudinal influencing length of induced stress on roadbed under wheel load relates to the contact conditions between concrete layers,increasing nonlinearly at a larger coefficient of friction.Given a measured coefficient of friction of 0.7,the calculated longitudinal influencing length(9.0 m) matches with field data.The longitudinal influencing length is not affected with the increasing velocity.As stress concentration arises with expansion joints,the worstcase scenario emerges when double-axle loads are exerted immediately above the expansion joints between concrete bases.A stress concentration factor Cvon the roadbed is proposed;it increases with the increasing velocity,changing from 1.33 to 1.52 at velocities between 5 and 400 km/h.The stress distribution on roadbeds transforms from a trapezoid pattern at continuous sections to a triangle pattern at points with longitudinal discontinuities.An explicit expression is finally proposed for the stress pattern on roadbed under expansion joints.Although structural discontinuities induce stress raiser,the extent of concentration is mitigated with increasing depth at different velocity levels. 展开更多
关键词 Ballastless track Expansion joint Dynamic stress ROADBED stress distribution
下载PDF
Micro sliding friction model considering periodic variation stress distribution of contact surface and experimental verification
2
作者 卢晟昊 韩靖宇 阎绍泽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期452-466,共15页
Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring... Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved. 展开更多
关键词 periodic variation stress distribution micro sliding friction model tangential stiffness experimental analysis STICK-SLIP
下载PDF
Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage:Theory,Experiments and Numerical Modelling
3
作者 Lisheng Luo Xinran Xie +2 位作者 Yongqiang Zhang Xiaofeng Zhang Xinyue Cui 《Journal of Renewable Materials》 SCIE EI 2023年第2期791-809,共19页
Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to pr... Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage,and consequently,the failure of such glulam beams cannot be predicted effectively.To address these issues,an analytical method considering material nonlinearity was proposed for glulam beams,and the calculating equations of deflection and shear stress distribution for different failure modes were established.The proposed method was verified by experiments and numerical models under the corresponding conditions.Results showed that the theoretical calculations were in good agreement with experimental and numerical results,indicating that the equations proposed in this paper were reliable and accurate for such glulam beams with wood material in the elastic-plastic stage ignoring the influence of mechanic properties in radial and tangential directions of wood.Furthermore,the experimental results reported by the previous studies indicated that the method was applicable and could be used as a theoretical reference for predicting the failure of glulam beams. 展开更多
关键词 Glulam beams load-deflection relationship shear stress distribution elastic-plastic stage numerical model
下载PDF
Effects of Material Parameters on Stress Distribution in Casing-cement-formation(CCF)Multilayer Composite System
4
作者 Chao ZHANG Yuanbo XIA +2 位作者 Bo ZHOU Xiuxing ZHU Haijing WANG 《Mechanical Engineering Science》 2023年第2期8-16,共9页
This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are b... This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are based on the traditional CCF system with the single casing and cement sheath,but these results are not adaptive to the CCF system multiple composite system.In this paper,the FEM numerical model of CCF multilayer composite system was constructed.Numerical simulations were calculated and compared with the system which consists of the single casing and cement sheath.Results show that the multilayer composite system possesses better performance.On this basis,the sensitivity analysis of main influence mechanical parameters such as in-situ stress,the elastic of cement sheathes and the elastic of formation are conducted.The cement sheath on the inside,namely cement sheath-1,is sensitive to its elastic modulus;meanwhile,the cement sheath on the outside,namely cement sheath-2,is not so sensitive to the elastic modulus of cement sheath-1.Cement sheath-1 and cement sheath-2 are all sensitive to the elastic modulus of cement sheath-2,and the mises stress of them has opposite trend to the elastic modulus of cement sheath-2.The proper values of elastic modulus of cement sheath-1 and cement sheath-2 are 5GPa and 5GPa to 30GPa,respectively.Under the in-situ stress ratio σh/σH=0.7,the maximum mises stress of cementsheath-1 and cement sheath-2 increase as the increase of σh,and they are nearly equal when σh=15GPa.This research can be helpful for the design and analysis of CCF multilayer composite system. 展开更多
关键词 In-situ stress stress distribution CASING Cementsheath FORMATION MULTILAYER
下载PDF
Finite element analysis of stress distribution and burst failure of SiC_f/Ti-6Al-4V composite ring 被引量:2
5
作者 张红园 杨延清 罗贤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期261-270,共10页
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo... A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature. 展开更多
关键词 titanium-matrix composites RING stress distribution burst failure finite element analysis thermal residual stresses
下载PDF
Nonlinear Analysis of Axial-load and Stress Distribution for Threaded Connection 被引量:21
6
作者 LIAO Ridong SUN Yujuan ZHANG Weizheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期869-875,共7页
Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded co... Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded connection is difficult to measure. So it is necessary to study the reliable numerical method. At present neither the convergence analysis of the computational results nor the elastic-plastic analysis in the loading-unloading process are studied. In this paper, von Mises plasticity and kinematic hardening model is used to describe the material response. A new convergence criterion for nonlinear finite element analysis of the loading-unloading process is proposed. An axisymmetric finite element model according to the proposed convergence criterion is developed and used to analyze the distributions of axial-load and stress. It can be conclude that the stress distribution analysis is more dependent on the mesh density than the axial-load distribution analysis. The stress distribution result indicates that with increasing of applied load, the engaged threads close to the nut-bearing surface become plastic firstly. The axial-load distribution result reveals that the load percentage carried by single thread depends on the position of thread and load intensity. When the load is relatively small, the applied load is mainly carried by the engaged threads near the nut-bearing surface, when the load is larger, the differences of percentages for all threads become small. The proposed convergence analyzing procedure is applicable for other nonlinear analyses. The obtained distributions of axial-load and stress can be a reference of engineering application. 展开更多
关键词 threaded connection finite element method (FEM) axial-load distribution stress distribution convergence criterion
下载PDF
Analytical model and application of stress distribution on mining coal floor 被引量:19
7
作者 ZHU Shu-yun JIAN Zhen-quan +2 位作者 HOU Hong-liang XIAO Wei-guo YAO Pu 《Journal of China University of Mining and Technology》 EI 2008年第1期13-17,共5页
Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fix... Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aauifers. 展开更多
关键词 MODEL coal floor stress distribution ANALYSIS
下载PDF
Characteristics of stress distribution in floor strata and control of roadway stability under coal pillars 被引量:9
8
作者 Tongqiang Xiao Bai Jianbiao +1 位作者 Xu Lei Zhang Xuebin 《Mining Science and Technology》 EI CAS 2011年第2期243-247,共5页
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.... Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar. 展开更多
关键词 Close-distance seams Coal pillar stress distribution Roadway layout Surrounding rock control
下载PDF
Predicting the present-day in situ stress distribution within the Yanchang Formation Chang 7 shale oil reservoir of Ordos Basin, central China 被引量:6
9
作者 Wei Ju Xiao-Bing Niu +4 位作者 Sheng-Bin Feng Yuan You Ke Xu Geof Wang Hao-Ran Xu 《Petroleum Science》 SCIE CAS CSCD 2020年第4期912-924,共13页
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development o... The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger. 展开更多
关键词 Present-day in situ stress Chang 7 shale oil reservoir Influencing factor Ordos Basin stress distribution prediction Yanchang Formation
下载PDF
Study of electromagnetic characteristics of stress distribution and sudden changes in the mining of gob-surrounded coal face 被引量:12
10
作者 WANG En-yuan LIU Xiao-fei ZHAO En-lai LIU Zhen-tang 《Journal of China University of Mining and Technology》 EI 2008年第1期1-5,共5页
The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of... The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced. 展开更多
关键词 gob-surrounded coal face stress distribution sudden stress change rock burst electromagnetic radiation (EMR)
下载PDF
Thermal residual stresses and stress distributions under tensile and compressive loadings of short fiber reinforced metal matrix composites 被引量:5
11
作者 丁向东 连建设 +1 位作者 江中浩 孙军 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期399-404,共6页
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite ele... The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [ 展开更多
关键词 metal matrix composite finite element method thermal residual stresses stress distribution
下载PDF
Numerical analysis of stress distribution in the upper arm tissues under an inflatable cuff:Implications for noninvasive blood pressure measurement 被引量:3
12
作者 Zhipeng Deng Fuyou Liang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期959-969,共11页
An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy... An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element(FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement. 展开更多
关键词 Noninvasive blood pressure measurement Inflatable cuff Upper arm Finite element(FE) model Loading and contact conditions stress distribution Obese patients
下载PDF
Effects of Rock Bolting on Stress Distribution around Tunnel Using the Elastoplastic Model 被引量:3
13
作者 Muya M S 何波 +1 位作者 王靖涛 李国成 《Journal of China University of Geosciences》 SCIE CSCD 2006年第4期337-341,354,共6页
To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on th... To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering. 展开更多
关键词 computer simulation TUNNEL stress distribution rock bolt overburden depths.
下载PDF
Simulation of Stress Distribution around Tunnels and Interaction between Tunnels Using an Elasto–plastic Model 被引量:3
14
作者 Muya M S 何波 +1 位作者 王靖涛 李国成 《Journal of China University of Geosciences》 SCIE CSCD 2007年第1期90-94,共5页
This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analy... This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering. 展开更多
关键词 computer simulation TUNNELS stress distribution INTERACTION
下载PDF
Mechanism of stress distribution and failure around two different shapes of openings within fractured rock-like materials 被引量:1
15
作者 FAN Xiang YANG Zhi-jun +2 位作者 HONG Ming YU Hao XIE Yong-li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1916-1932,共17页
The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and tw... The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure. 展开更多
关键词 TUNNEL fractured rock-like material 2D particle flow code crack initiation stress distribution
下载PDF
Numerical simulation of stress distribution in Al_2O_3-TiC/Q235 diffusion bonded joints 被引量:1
16
作者 沈孝芹 李亚江 +1 位作者 王娟 黄万群 《China Welding》 EI CAS 2008年第4期47-51,共5页
The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stres... The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TIC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TIC side, which is consistent with the stress FEM calculating results. 展开更多
关键词 Al2O3-TiC composite ceramic Q235 steel diffusion bonding stress distribution finite element method
下载PDF
Analysis of the Stress Distribution Pattern of Anatomic and Non-Anatomic Tooth Forms on Maxillary and Mandibular Edentulous Ridges—A Photoelastic Study 被引量:1
17
作者 T. K. Chandrathara M. Lovely +1 位作者 Eldo Koshy Jitendra Jethwani 《Journal of Biosciences and Medicines》 2020年第6期113-126,共14页
<strong>Aim: </strong>To compare the type of stress distribution pattern occurring with anatomic and non-anatomic tooth forms beneath a complete denture in both maxillary and mandibular arch. <strong>... <strong>Aim: </strong>To compare the type of stress distribution pattern occurring with anatomic and non-anatomic tooth forms beneath a complete denture in both maxillary and mandibular arch. <strong>Methodology: </strong>A photoelastic model of the edentulous maxillary and mandibular ridge was prepared meticulously to simulate the human mandible and maxilla. Two sets of acrylic teeth with anatomic and non-anatomic occlusal forms were used to fabricate upper and lower dentures. A vertical static load of 100 N was applied through the mandibular model to the maxillary model. After load application on the dentures the photoelastic model as well as the upper and lower complete dentures were sectioned in the midline. The sectioned photoelastic model was viewed through a polariscope to observe the fringe pattern indicating varying amounts of stress distribution. In this study, a two-dimensional photoelastic stress analysis technique was utilized. <strong>Results:</strong> Force per unit area was observed more in anatomic teeth than the non-anatomic counterpart. Hence anatomic tooth forms may increase the possibility of bone resorption rate over a period of time. However, in non-anatomic lower teeth, a decrease in value was observed from posterior to anterior region. <strong>Conclusion: </strong>Stress of greater magnitude was observed with cuspal teeth whereas non-anatomic (0<span style="white-space:nowrap;">&deg;</span>) showed slightly less magnitude of stress. Depending upon the clinical situation the clinician needs to choose the type of occlusal tooth forms for edentulous patients. 展开更多
关键词 Complete Denture Anatomic Tooth Forms Non Anatomic Tooth Forms stress distribution Photoelastic Study
下载PDF
Study on stress distribution and failure criterion of the roof for the severely inclined coal seam under long wall working 被引量:1
18
作者 MENG Xiang-rui GAO Zhao-ning WANG Xiang-qian 《Journal of Coal Science & Engineering(China)》 2012年第2期118-122,共5页
By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of t... By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of the stress distribution. When the main roof stress distribution was characterized, the failure form of the roof in the long wall coal seam under work was given with the failure criterion deduced. The deduced failure criterion was then applied to the No.3232(3) face of the Li- zuizi Coal Mine; the first pressure for the working face was accurately predicted. Results of the field application show that the main roof of the severely inclined coal seam under long wall working breaks in the O-X pattern, which is basically in accor- dance with the reality. 展开更多
关键词 stress distribution severely inclined coal seam failure criterion
下载PDF
Stress Distribution in the Upper Shihezi Formation from 1D Mechanical Earth Model and 3D Heterogeneous Geomechanical Model,Linxing Region,Eastern Ordos Basin,Central China
19
作者 JU Wei SHEN Jian +4 位作者 QIN Yong WANG Geoff XU Ke LI Guozhang LI Chao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期976-987,共12页
The Upper Shihezi sedimentary rocks in the Linxing region has been estimated with a significant volume of tight sandstone gas.However,lateral distribution of the present-day stress magnitude is poorly understood,which... The Upper Shihezi sedimentary rocks in the Linxing region has been estimated with a significant volume of tight sandstone gas.However,lateral distribution of the present-day stress magnitude is poorly understood,which limits further gas production.Hence,a one-dimensional mechanical earth model and a three-dimensional heterogeneous geomechanical model are built to address this issue.The results indicate that the strike-slip stress regime is dominant in the Upper Shihezi Formation.Relatively low stresses are mainly located around wells L-60,L-22,L-40,L-90,etc,and stress distributions exhibit the similarity in the Members H2 and H4.The differential stresses are relatively low in the Upper Shihezi Formation,suggesting that complex hydraulic fracture networks may be produced.Natural fractures in the Upper Shihezi Formation contribute little to the overall gas production in the Linxing region.In addition,the minimum principal stress gradient increases with Young's modulus,suggesting that the stiffer rocks commonly convey higher stress magnitudes.There is a strong interplay between stress distribution and heterogeneity in rock mechanics.Overall,the relative error between the predicted and measured results is less than 10%,implying that the predicted stress distribution is reliable and can be used for subsequent analysis in the Linxing region. 展开更多
关键词 stress distribution numerical simulation tight sandstone gas Upper Shihezi Formation Linxing region Ordos Basin
下载PDF
Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
20
作者 Jingyu Han Jiahao Ding +1 位作者 Hongyu Wu Shaoze Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期350-363,共14页
Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accurac... Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then,we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance. 展开更多
关键词 stress distribution tangential stiffness friction coefficient STICK-SLIP friction model
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部