期刊文献+
共找到12,803篇文章
< 1 2 250 >
每页显示 20 50 100
The effect of abiotic stresses on plant C:N:P homeostasis and their mitigation by silicon
1
作者 Milton Garcia Costa Renato de Mello Prado +1 位作者 Luiz Fabiano Palaretti Jonas Pereira de Souza Júnior 《The Crop Journal》 SCIE CSCD 2024年第2期340-353,共14页
In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial e... In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources(water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation. 展开更多
关键词 Nutritional stoichiometry Elemental stoichiometry Beneficial element Environmental stresses Nutritional efficiency Carbon use efficiency Agricultural sustainability
下载PDF
Boulder-induced form roughness and skin shear stresses in a gravel-bed stream
2
作者 DAS Ratul DATTA Akash 《Journal of Mountain Science》 SCIE CSCD 2024年第1期346-360,共15页
Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spac... Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface. 展开更多
关键词 Array of boulders Near wake flow zones Velocity distributions Skin roughness Form induced shear stresses
下载PDF
Effect of degree of saturation on stresses and pore water pressure in the subgrade layer caused by railway track loading
3
作者 Mohammed Y.Fattah Qutaiba G.Majeed Hassan H.Joni 《Railway Sciences》 2024年第4期413-436,共24页
Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of ... Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of this study can be identified by studying the effect of subgrade layer degree of saturation variation,load amplitude and load frequency on the transmitted stresses through the ballast layer to the subgrade layer and the stress distribution inside it and investigating the excess pore water pressure development in the clay layer in the case of a fully saturated subgrade layer and the change in matric suction in the case of an unsaturated subgrade layer.Design/methodology/approach-Thirty-six laboratory experiments were conducted using approximately half-scale replicas of real railways,with an iron box measuring 1.5×1.031.0 m.Inside the box,a 0.5 m thick layer of clay soil representing the base layer was built.Above it is a 0.2 m thick ballast layer made of crushed stone,and on top of that is a 0.8 m long rail line supported by three 0.9 m(0.1×0.1 m)slipper beams.The subgrade layer has been built at the following various saturation levels:100,80,70 and 60%.Experiments were conducted with various frequencies of 1,2 and 4 Hz with load amplitudes of 15,25 and 35 kN.Findings-The results of the study demonstrated that as the subgrade degree of saturation decreased from 100 to 60%,the ratio of stress in the lateral direction to stress in the vertical direction generated in the middle of the subgrade layer decreased as well.On average,this ratio changed from approximately 0.75 to approximately 0.65.Originality/value-The study discovered that as the test proceeded and the number of cycles increased,the value of negative water pressure(matric suction)in the case of unsaturated subgrade soils declined.The frequency of loads had no bearing on the ratio of decline in matric suction values,which was greater under a larger load amplitude than a lower one.As the test progressed(as the number of cycles increased),the matric suction dropped.For larger load amplitudes,there is a greater shift in matric suction.The change in matric suction is greater at higher saturation levels than it is at lower saturation levels.Furthermore,it is seen that the load frequency value has no bearing on how the matric suction changes.For all load frequencies and subgrade layer saturation levels,the track panel settlement rises with the load amplitude.Higher load frequency and saturation levels have a greater impact. 展开更多
关键词 Subgrade clay UNSATURATED TRACK Matric suction stresses
下载PDF
Analysis and Characterization of the GABA Transaminase and Succinate Semialdehyde Dehydrogenase Genes in the Microalga Isochrysis zhanjiangensis in Response to Abiotic Stresses
4
作者 TIAN Jiaojiao ZHANG Lin +7 位作者 LU Xinyue YE Lingzhi WU Yuanyuan CHEN Deshui CAO Jiayi JIANG Jiaxin XU Jilin YAN Xiaojun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期775-785,共11页
Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA sh... Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses. 展开更多
关键词 abiotic stress GABA heterologous expression Isochrysis zhanjiangensis TRANSCRIPTION
下载PDF
Performance of water-coupled charge blasting under different in-situ stresses
5
作者 ZHOU Zi-long WANG Zhen +2 位作者 CHENG Rui-shan CAI Xin LAN Ri-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2300-2320,共21页
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ... Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses. 展开更多
关键词 water-coupled blasting in-situ stress water-coupled charge coefficient rock type borehole-connection angle
下载PDF
Genome-Wide Identification and Expression Analysis of the GSK3 Gene Family in Sunflower under Various Abiotic Stresses
6
作者 Xianwen Ji Ziying Jiang +2 位作者 Jichao Wang Lili Dong Xinyi Deng 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第8期1839-1850,共12页
Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome datab... Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance. 展开更多
关键词 Sunflower abiotic stress GSK expression analysis
下载PDF
Stresses in the Scapular Fossa Do Not Exceed the Yield Stress When Elevated up to 135 Degrees of Abduction after Reverse Shoulder Arthroplasty
7
作者 Rina Sakai Tomonori Kenmoku +3 位作者 Ryo Tazawa Kazuhiro Yoshida Tomomi Mizuhashi Masanobu Ujihira 《Journal of Biomedical Science and Engineering》 2024年第2期35-40,共6页
Reverse shoulder arthroplasty (RSA) is an effective treatment for rotator cuff tears. Despite its advantages, complications occur at a high rate. Complications requiring revision include a high rate of base plate fail... Reverse shoulder arthroplasty (RSA) is an effective treatment for rotator cuff tears. Despite its advantages, complications occur at a high rate. Complications requiring revision include a high rate of base plate failure, 38% of which are due to instability. The primary stability the base plate ensures is a crucial factor and, thus, is the subject of much debate in clinical studies and biomechanical research. This study is aimed to provide data that will contribute to the base plate’s pri-mary stability and glenoid longevity by clarifying the stresses at the scapular fossa and base plate interface associated with elevation after RSA. A 3D finite element model was created from the DICOM data for the scapulohumeral joint and SMR shoulder system. For loading conditions, 30 N was applied for each posi-tion with abduction angles of 0, 45, 90, and 135 degrees. A three-dimensional fi-nite element analysis was performed using the static implicit method with LS-DYNA. The von Mises stresses in the scapular fossa were found not to exceed the yield stress on the bone even after elevation to an abduction angle of 135 de-grees after RSA. It is rough to uniformly compare the yield stress and the von Mises stress, but it was inferred that the possibility of fracture is low unless a large external force is applied. A maximum von Mises stress showed 0 degrees of abduction, suggesting that the lowered position is in a more severe condition than the elevated position. If better improvement is desired, it may be necessary to devise ways to reduce the stress on the upper screw. . 展开更多
关键词 Reverse Shoulder Arthroplasty Finite Element Analysis Yield Stress GLENOID
下载PDF
The soybean GmPUB21-interacting protein GmDi19-5 responds to drought and salinity stresses via an ABA-dependent pathway
8
作者 Yunhua Yang Rui Ren +8 位作者 Adhimoolam Karthikeyan Jinlong Yin Tongtong Jin Fei Fang Han Cai Mengzhuo Liu Dagang Wang Haijian Zhi Kai Li 《The Crop Journal》 SCIE CSCD 2023年第4期1152-1162,共11页
Drought-induced protein 19(Di19) is a Cys2/His2 zinc-finger protein that functions in plant growth and development and in tolerance to abiotic stresses.Gm PUB21,an E3 ubiquitin ligase,negatively regulates drought and ... Drought-induced protein 19(Di19) is a Cys2/His2 zinc-finger protein that functions in plant growth and development and in tolerance to abiotic stresses.Gm PUB21,an E3 ubiquitin ligase,negatively regulates drought and salinity response in soybean.We identified potential interaction target proteins of Gm PUB21by yeast two-hybrid c DNA library screening,Gm Di19-5 as a candidate.Bimolecular fluorescence complementation and glutathionine-S-transferase pull-down assays confirmed the interaction between Gm Di19-5 and Gm PUB21.Gm Di19-5 was induced by Na Cl,drought,and abscisic acid(ABA) treatments.Gm Di19-5 was expressed in the cytoplasm and nucleus.Gm Di19-5 overexpression conferred hypersensitivity to drought and high salinity,whereas Gm Di19-5 silencing increased drought and salinity tolerance.Transcripts of ABA-and stress response-associated genes including Gm RAB18 and Gm DREB2A were downregulated in Gm Di19-5-overexpressing plants under drought and salinity stresses.ABA decreased the protein level of Gm Di19-5 in vivo,whereas Gm PUB21 increased the decrease of Gm Di19-5 after exogenous ABA application.The accumulation of Gm PUB21 was also inhibited by Gm Di19-5.We conclude that Gm PUB21 and Gm Di19-5 collaborate to regulate drought and salinity tolerance via an ABA-dependent pathway. 展开更多
关键词 SOYBEAN Drought and salinity stresses GmDi19-5 GmPUB21 ABA-dependent pathway
下载PDF
Genome-wide identification of TPS genes in sesame and analysis of their expression in response to abiotic stresses 被引量:2
9
作者 Wangyi Zhou Chen Sheng +4 位作者 Senouwa Segla Koffi Dossou Zhijian Wang Shengnan Song Jun You Linhai Wang 《Oil Crop Science》 CSCD 2023年第2期81-88,共8页
Trehalose and its precursor,trehalose-6-phosphate,play critical roles in plant metabolism and response to abiotic stresses.Trehalose-6-phosphate synthase(TPS)is a key enzyme in the trehalose synthesis pathway.Hence th... Trehalose and its precursor,trehalose-6-phosphate,play critical roles in plant metabolism and response to abiotic stresses.Trehalose-6-phosphate synthase(TPS)is a key enzyme in the trehalose synthesis pathway.Hence this study identified TPS genes in sesame(SiTPSs)and examined their expression patterns under various abiotic stresses.Totally,ten SiTPSs were identified and comprehensively characterized.SiTPSs were found to be unevenly distributed on five out of 13 sesame chromosomes and were predicted to be localized in chloroplasts and vacuoles of cells.Phylogenetic analysis classified SiTPS proteins into two groups(I and II),which was supported by gene structure and conserved motif analyses.Analysis of cis-acting elements in promoter regions of SiTPSs revealed that they might primarily involve developmental and environmental responses.SiTPSs exhibited different expression patterns in different tissues and under different abiotic stresses.Most group II SiTPS genes(SiTPS4-SiTPS10)were strongly induced by drought,salt,waterlogging,and osmotic stress.Particularly,SiTPS10 was the most significantly up-regulated under various abiotic stresses,indicating it is a candidate gene for improving sesame tolerance to multiple abiotic stresses.Our results provide insight into the TPS gene family in sesame and fundamental resources for genomics studies towards dissecting SiTPS genes’functions. 展开更多
关键词 SESAME TPS Gene family Abiotic stress Gene expression
下载PDF
Modes of multi-mechanistic gas diffusion in shale matrix at varied effective stresses:Observations and analysis 被引量:1
10
作者 Tian-Yu Chen Yan-Yu Hao +3 位作者 Derek Elsworth Hong-Ming Zhang Zhi-Ming Hu Guang-Lei Cui 《Petroleum Science》 SCIE EI CSCD 2023年第5期2908-2920,共13页
Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size population... Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size populations in shale matrix under recreated in situ stress is lacking.We report gas-diffusion measurements under constant in situ stress but variable gas pressures for contrasting non-adsorbent(helium(He))and adsorbed(methane(CH_(4)))gases to investigate the impact of effective stress on the evolution of dominant mechanisms of diffusion.An intact sample replicates true pore-network topology and diffusion paths.An integrated diffusion model is proposed that combines the effects of slip flow,Knudsen flow,and surface diffusion to constrain the evolution of these flow regimes and their respective contributions to the observational data.Finally,a probability density function(PDF)is employed to separate the gas content distributions of macropores and micropores from the total gas content and to investigate gas contributions in various pores.The results reveal that the diffusion coefficients of both He and CH_(4) in macropores and micropores increase with gas pressure but decrease with increasing effective stress.The diffusion coefficients of He and CH_(4) are different in macropores but remain nearly the same in micropores.The diffusion coefficients of slip flow and surface diffusion increase with decreasing effective stress except for CH_(4) diffusion in the micropores,while the evolution of Knudsen diffusion shows the opposite trend.Slip flow plays a dominant role in He and CH_(4) diffusion within macropores(pore size 45 nm).Knudsen diffusion gradually becomes significant for He diffusion in the micropores(pore size 4 nm),conversely,for CH_(4) diffusion in the micropores,surface diffusion becomes significant.Related to gas production from reservoirs,the contributions of the micropores will increase gradually with the duration of gas recovery,indicating the significant role of gas diffusion in micropores to steady supply during latestage production. 展开更多
关键词 Diffusion coefficient In situ stress Varied pore types Diffusion mechanisms Gas-content contributions
下载PDF
Effects of intermediate stress on deep rock strainbursts under true triaxial stresses 被引量:1
11
作者 Lihua Hu Liyuan Yu +2 位作者 Minghe Ju Xiaozhao Li Chun’an Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期659-682,共24页
The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in si... The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity. 展开更多
关键词 Strainbursts Intermediate stress Distinct element method(DEM) Structural failure True triaxial Strength criterion
下载PDF
Identification and Characterization of ZF-HD Genes in Response to Abscisic Acid and Abiotic Stresses in Maize 被引量:1
12
作者 Xiaojie Jing Chunyan Li +5 位作者 Chengjuan Luo Chaonan Yao Jiahao Zhang Tingting Zhu Jiuguang Wang Chaoxian Liu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期707-723,共17页
The zinc finger homeodomain(ZF-HD)genes belong to the homeobox gene family,playing critical roles in flower development and stress response.Despite their importance,however,to date there has been no genome-wide identi... The zinc finger homeodomain(ZF-HD)genes belong to the homeobox gene family,playing critical roles in flower development and stress response.Despite their importance,however,to date there has been no genome-wide identification and characterization of the ZF-HD genes that are probably involved in stress responses in maize.In this study,24 ZF-HD genes were identified,and their chromosomal locations,protein properties,duplication patterns,structures,conserved motifs and expression patterns were investigated.The results revealed that the ZF-HD genes are unevenly distributed on nine chromosomes and that most of these genes lack introns.Six and two ZF-HD genes have undergone segmental and tandem duplication,respectively,during genome expansion.These 24 ZF-HD transcription factors were classified into six major groups on the basis of protein molecular evolutionary relationship.The expression profiles of these genes in different tissues were evaluated,resulting in producing two distinct clusters.ZF-HD genes are preferentially expressed in reproductive tissues.Furthermore,expression profiles of the 24 ZF-HD genes in response to different kinds of stresses revealed that ten genes were simultaneously up-regulated under ABA,salt and PEG treatments;meanwhile four genes were simultaneously down-regulated.These findings will pave the way for deciphering the function and mechanism of ZF-HD genes on how to implicate in abiotic stress. 展开更多
关键词 Maize(Zea mays L.) ZF-HD evolutionary relationship expression pattern abiotic stress
下载PDF
Adaptive strategy of Nitraria sibirica to transient salt,alkali and osmotic stresses via the alteration of Na+/K+fluxes around root tips
13
作者 Xindi Mei Ting Dai Yingbai Shen 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期425-432,共8页
Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as ... Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as the control,was subjected to transient salt stress(100 mM NaCl),alkali stress(50 mM Na_(2)CO_(3)),and osmotic stress(175 mM mannitol).The ionic fluxes of Na^(+)and K^(+)in the root apical region were measured.Results show that,under salt and alkali stress,N.sibirica roots exhibited higher capacities to limit Na+influx and reduce K+efflux,thereby resulting in lower Na^(+)/K^(+)ratios compared with V.radiata roots.Alkali stress induced stronger Na^(+)influx and K+efflux in the root salt stress treatment;Na^(+)influx was mainly observed in the root cap,while K^(+)efflux was mainly observed in the elongation zone.While under osmotic stress,N.sibirica roots showed stronger Na+efflux and weaker K+efflux than V.radiata roots.Na+efflux was mainly observed in the root elongation zone,while K+efflux was in the root cap.These results reveal the ionic strategy of N.sibirica in response to transient salt,alkali,and osmotic stresses through the regulation of Na+/K+flux homeostasis. 展开更多
关键词 Nirtaria sibirica Na^(+)/K^(+)fl uxes Na^(+)/K^(+)ratios Salt stress Alkali stress Osmotic stress
下载PDF
Analysis of stresses at the center of transversely isotropic Brazilian disk
14
作者 Ali Aminzadeh Florian Amann 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期618-629,共12页
This article presents the stresses at the center of a Brazilian disk(BD)for transversely isotropic rocks.It is shown that the solution of stresses at the center of an anisotropic disk is a function of the disk radius ... This article presents the stresses at the center of a Brazilian disk(BD)for transversely isotropic rocks.It is shown that the solution of stresses at the center of an anisotropic disk is a function of the disk radius and the magnitude of applied load,as well as the material orientation with respect to the load axis and two dimensionless ratios with specific physical meanings and limitations.These two dimensionless parameters are the ratios of Young’s modulus and apparent shear modulus,although the ratio of apparent shear modulus will be eliminated if the Saint-Venant assumption is considered.Considerable finite element simulations are carried out to find the stresses at the disk center concerning the material orientation and the two dimensionless parameters.Also,an approximate formula obtained from analytical results,previously proposed in the literature for solving the tensile and compressive stresses at the disk center,is re-written and simplified based on these new definitions.The results of the approximate formula fitted to the analytical results are compared to those obtained from numerical solutions,suggesting a good agreement between the numerical and analytical methods.An approximate equation for the shear stress at the disk center is also formulated based on the numerical results.Finally,the influence of the assumptions for simplification of the proposed formula for the tensile,compressive,and shear stresses at the disk center is discussed,and simple and practical equations are proposed as estimations for the stresses at the center of the BD specimen for low to moderate anisotropic rocks.For highly anisotropic rocks,the reference plots can be used for more accuracy. 展开更多
关键词 Brazilian test Transverse isotropy Rock anisotropy Anisotropic disk Tensile stress Shear stress
下载PDF
Peptide Transporter OsNPF8.1 Contributes to Sustainable Growth under Salt and Drought Stresses,and Grain Yield under Nitrogen Deficiency in Rice
15
作者 QIU Diyang HU Rui +6 位作者 LI Ji LI Ying DING Jierong XIA Kuaifei ZHONG Xuhua FANG Zhongming ZHANG Mingyong 《Rice science》 SCIE CSCD 2023年第2期113-126,I0031-I0034,共18页
Peptide transport is important for plant tissues where rapid proteolysis occurs,especially during germination and senescence,to enhance redistribution of organic nitrogen(N).However,the biological role of peptide tran... Peptide transport is important for plant tissues where rapid proteolysis occurs,especially during germination and senescence,to enhance redistribution of organic nitrogen(N).However,the biological role of peptide transporters is poorly investigated in rice.We characterized the function of the peptide transporter OsNPF8.1 of rice nitrate transporter 1/peptide transporter family(NPF).Ectopic expression of OsNPF8.1 in yeast revealed that OsNPF8.1 encoded a high-affinity di-/tri-peptide transporter,and the osnpf8.1 mutants had a lower uptake rate of the fluorescent-labelled dipeptide c in leaves of rice seedlings.Histochemical assays showed that OsNPF8.1 was highly expressed in mesophyll cells and vascular parenchyma cells,but not detected in root hairs and epidermises.Expression of OsNPF8.1 was induced by N deficiency,drought,Na Cl and abscisic acid,and kept at a high level in senescing leaves.Under N deficiency conditions,compared with the wild type Zhonghua 11,the osnpf8.1 mutants grew slower at the seedling stage,and had lower grain yield and lower N content in the grains.In contrast,OsNPF8.1-over-expressing rice(OsNPF8.1-OE)grew faster at the seedling stage and had a higher grain yield.The osnpf8.1 seedlings were less tolerant to salt and drought stresses.These results suggested that stress-induced organic N transportation mediated by OsNPF8.1 might contribute to balance plant growth and tolerate to salt/drought stress and N-deficiency. 展开更多
关键词 abiotic stress NITROGEN peptide transporter RICE
下载PDF
Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling
16
作者 Kwang Seon Shin Lifei Wang +3 位作者 Mingzhe Bian Shihoon Choi Alexander Komissarov Viacheslav Bazhenov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2027-2041,共15页
Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear... Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear stress(CRSS)of slips and twinning in Mg single crystals.The duplex non-basal slip took place in the temperature range from 613 to 733 K when the single crystal samples were stretched along the<0110>direction.In contrast,the single basal slip and prismatic slip were mainly activated in the temperature range from RT to 733 K when the tensile directions were inclined at an angle of 45°with the basal and the prismatic plane,respectively.Viscoplastic self-consistent(VPSC)crystal modeling simulations with genetic algorithm code(GA-code)were carried out to obtain the best fitted CRSSs of major deformation modes,such as basal slip,prismatic slip,pyramidalⅡ,{1012}tensile twinning and{1011}compressive twinning when duplex slips accommodated deformation.Additionally,CRSSs of the basal and the prismatic slip were derived using the Schmid factor(SF)criterion when the single slip mainly accommodated deformation.From the CRSSs of major deformation modes obtained by the VPSC simulations and the SF calculations,the CRSSs for basal slip and{1012}tensile twinning were found to show a weak temperature dependence,whereas those for prismatic,slip and{1011}compressive twinning exhibited a strong temperature dependence.From the comparison of previous results,VPSC-GA modeling was proved to be an effective method to obtain the CRSSs of various deformation modes of Mg and its alloys. 展开更多
关键词 MAGNESIUM Single crystal Critical resolve shear stress SLIP TWINNING
下载PDF
Residual Stresses and Forming Quality of Metal Bipolar Plates for PEMFC During the Stamping Process
17
作者 Zhang Jie Wang Ruichuan Wu Ningpan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期51-64,共14页
Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and ... Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and lifetime of the proton exchange membrane fuel cell(PEMFC).The residual stress and spring back behavior which occur as a result of stamping a bipolar plate are investigated in this study.The effects of the punch radius,the die radius,the channel depth,and the clearance between the punch and the die on the residual stress and forming quality of the bipolar plate are examined.The stamping process can be divided into three stages.The high stress area and the middle section residual stress area were selected to study the formation process and to obtain the composition of the residual stress regions.Spring back was mainly related to the position of the fixed end of the sheet and the degree of plastic deformation,and the sheet thickness have increased by 2μm after spring back.Based on the results of finite element analysis,as described by the distribution of residual stress,the formation,the thickness of the middle cross section and the equivalent plastic strain,it was found that all the tool parameters affected the distribution of the residual stress.This research can provide a design reference for the manufacture of metallic bipolar plates based on the stamping process. 展开更多
关键词 PEMFC metallic bipolar plate STAMPING residual stress spring back
下载PDF
The lateral pressure coefficient at rest of expansive soils in landfill at various vertical stresses and moisture contents
18
作者 ZHOU Zhen-hua KONG Ling-wei +2 位作者 SUN Zhi-liang LI Tian-guo YAN Jun-biao 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1102-1117,共16页
When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining str... When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value. 展开更多
关键词 Expansive soil k_(0)value LANDFILL Vertical stress Moisture content
下载PDF
Experimental investigation on crack initiation and damage stresses of deep granite under triaxial compression using acoustic methods
19
作者 Xiaoling Zhao Tao Zhou +2 位作者 Tianqi Zhai Yang Ju Jianbo Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期3071-3078,共8页
Crack initiation stress and crack damage stress are two critical indices for assessing the fracture strength of rock mass.However,understanding the stress characteristics of crack initiation and damage under triaxial ... Crack initiation stress and crack damage stress are two critical indices for assessing the fracture strength of rock mass.However,understanding the stress characteristics of crack initiation and damage under triaxial compression remains still immature.To address this problem,by acoustic monitoring,i.e.ultrasonic wave transmission and acoustic emission(AE),the integrated triaxial compression experiments were carried out on granitic specimens.The crack initiation and damage stresses were determined by wave velocity,wave amplitude and AE methods,respectively.The discrepancy of stresses for crack initiation and damage identified by these methods were examined.Results showed that the confinement affected the peak stress and corresponding strain,and these two parameters increased with increasing confining pressure.The ultrasonic wave velocity and wave amplitude first increased and then remained relatively stable,and finally decreased with increasing axial compressive stress.The number of AE events stayed at a relatively low extent until axial stress approached the peak;after that,the AE accumulative counts skyrocketed to the maximum.It also shows that for a given confinement,the stresses for crack initiation and damage identified by the wave amplitude method were the smallest,followed those by AE method and wave velocity method.Moreover,the stresses for crack initiation and crack damage identified by these methods increased generally with confining pressures.However,the rate of increment of these two crack stresses decreased with increasing confining pressure.In addition,the slight decrease in these two crack stresses ratios was noticed with increasing confining pressure.The findings are helpful to understand the crack stresses of deep rocks,in terms of support of deep underground engineering. 展开更多
关键词 Crack stress Ultrasonic wave Acoustic emission(AE) Triaxial compression
下载PDF
Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
20
作者 邹青钦 雷双 +1 位作者 李章勇 秦对 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期354-361,共8页
The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles a... The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues.Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells. 展开更多
关键词 cavitation dynamics cavitation-induced mechanical stress effects of the nearby bubble viscoelastic tissues
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部