The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts...The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts vary in number, type and reserves, but the mechanism was rarely researched before. Therefore, an explanation of the mechanism will promote petroleum exploration in Tazhong paleouplift. After studying the evolution and reservoir distribution of the Tazhong paleouplift, it is concluded that the evolution in late Caledonian, late Hercynian and Himalayan periods resulted in the upper and the lower structural layers. It is also defined that in the upper structural layer, structural and stratigraphic overlap reservoirs are developed at the top and the upper part of the paleouplift, which are dominated by oil reservoirs, while for the lower structural layer, lithological reservoirs are developed in the lower part of the paleouplift, which are dominated by gas reservoirs, and more reserves are discovered in the lower structural layer than the upper. Through a comparative analysis of accumulation conditions of the upper and the lower structural layers, the mechanism of enrichment differences is clearly explained. The reservoir and seal conditions of the lower structural layer are better than those of the upper layer, which is the reason why more reservoirs have been found in the former. The differences in the carrier system types, trap types and charging periods between the upper and the lower structural layers lead to differences in the reservoir types and distribution. An accumulation model is established for the Tazhong paleouplift. For the upper structural layer, the structural reservoirs and the stratigraphic overlap reservoirs are formed at the upper part of the paleouplift, while for the lower structural layer, the weathering crust reservoirs are formed at the top, the reef-flat reservoirs are formed on the lateral margin, the karst and inside reservoirs are formed in the lower part of the paleouplift.展开更多
The coupling agents content and thickness on glass fiber (GF) surfaces which have been treated with silanes and titanates under different conditions are tested by means of XRF (X-Ray Fluorescent spectrometry). And the...The coupling agents content and thickness on glass fiber (GF) surfaces which have been treated with silanes and titanates under different conditions are tested by means of XRF (X-Ray Fluorescent spectrometry). And the rheological characteristics of the dispersed systems prepared from the above glass fibers combined with unsaturated polyester resin (UP) are discussed. The results show that the rigidity of the internal layers of silane coupling agent absorbed by glass surfaces is greater than the one of the external layers; while the effect of the titanate coupling agents on the rheolo- gical characteristics of the system is approximately the same in each structural layer, that is due to the fact that both the internal and external layers of titanates on glass surfaces have the similar flexible structures.展开更多
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy ...The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.展开更多
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi...Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs.展开更多
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl...It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.展开更多
The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can cont...The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can contribute extra capacity to increase energy density,but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release.In this work,reversible Mn^(2+)/Mn^(4+)redox is realized in a P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)cathode material with high specific capacity and structure stability via Co substitution.The contribution of oxygen redox is suppressed significantly by reversible Mn^(2+)/Mn^(4+)redox without sacrificing capacity,thus reducing lattice oxygen release and improving the structure stability.Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5-4.5 V vs.Na^(+)/Na even at 10 C and after long-term cycling.It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range.The synergistic contributions of Mn^(2+)/Mn^(4+),Co^(2+)/Co^(3+),and O^(2-)/(O_n)^(2-)redox in P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)lead to a high reversible capacity of 215.0 m A h g^(-1)at 0.1 C with considerable cycle stability.The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.展开更多
In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered te...In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered ternary metal chalcogenide,Eu_(2)InTe_(5).Our results show that Eu_(2)InTe_(5) is a non-zero-gap metal with a layered structure characterized by strong intra-layer atomic bonding and weak inter-layer interaction,which suggests its potential application as a nanomaterial.We also studied the optical properties,including the absorption coefficient,imaginary and real parts of the complex dielectric constant,and found that Eu_(2)InTe_(5) exhibits strong photoresponse characteristics at the junction of ultraviolet and visible light as well as blue-green light,with peaks at wavelengths of 389 nm and 477 nm.This suggests that it could be used in the development of UV(ultraviolet)detectors and other optoelectronic devices.Furthermore,due to its strong absorption,low loss,and low reflectivity,Eu_(2)InTe_(5) has the potential to be used as a promising photovoltaic absorption layer in solar cells.展开更多
Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the s...Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.展开更多
The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction ...The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction is Ni3Si/(T+γ)/γ/…T/γ/Ni4Zn12Si3/γ/…Ni4Zn12Si3/γ/Ni4Zn12Si3/δ…/Ni4Zn12Si3/δ/liquid-Zn, and the diffusion path in solid-vapor reaction is Ni3Si/θ/(T+γ)/γ/…/T/γ/…T/γ/vapor-Zn. With increasing Zn diffusion flux, the diffusion reaction path moves toward the Zn-rich direction, and the distance from the Ni3Si substrate to the periodic layer pair nearest to the interface decreases. In the initial stage of both reactions,γphase nucleates and grows within T matrix phase at first, and then conjuncts together to form a band to reduce the surface energy. Based on the experimental results and diffusion kinetics analysis, the microstructure differences were compared and the formation mechanism of the periodic layered structure in Ni3Si/Zn system was discussed.展开更多
Using boundary layer data with regard to sea fog observed at the Science Experiment Base for Marine Meteorology at Bohe,Guangdong Province,the structure of the atmospheric boundary layer and the characteristics of the...Using boundary layer data with regard to sea fog observed at the Science Experiment Base for Marine Meteorology at Bohe,Guangdong Province,the structure of the atmospheric boundary layer and the characteristics of the tops of the fog and the clouds were analyzed.In addition,the effects of advection,radiation,and turbulence during sea fog were also investigated.According to the stability definition of saturated,wet air,the gradient of the potential pseudo-equivalent temperature equal to zero was defined as the thermal turbulence interface.There is evidence to suggest that two layers of turbulence exist in sea fog.Thermal turbulence produced by long-wave radiation is prevalent above the thermal turbulence interface,whereas mechanical turbulence aroused by wind shear is predominant below the interface.The height of the thermal turbulence interface was observed between 180 m and 380 m.Three important factors are closely related to the development of the top of the sea fog:(1) the horizontal advection of the water vapor,(2) the long-wave radiation of the fog top,and(3) the movement of the vertical turbulence.Formation,development,and dissipation are the three possible phases of the evolution of the boundary-layer structure during the sea fog season.In addition,the thermal turbulence interface is the most significant turbulence interface during the formation and development periods;it is maintained after sea fog rises into the stratus layer.展开更多
Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects f...Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.展开更多
Mn-based rechargeable aqueous zinc-ion batteries(ZIBs)are highly promising because of their high operating voltages,attractive energy densities,and eco-friendliness.However,the electrochemical performances of Mn-based...Mn-based rechargeable aqueous zinc-ion batteries(ZIBs)are highly promising because of their high operating voltages,attractive energy densities,and eco-friendliness.However,the electrochemical performances of Mn-based cathodes usually suffer from their serious structure transformation upon charge/discharge cycling.Herein,we report a layered sodium-ion/crystal water co-intercalated Birnessite cathode with the formula of Na0.55Mn2O4·0.57H2O(NMOH)for high-performance aqueous ZIBs.A displacement/intercalation electrochemical mechanism was confirmed in the Mn-based cathode for the first time.Na+and crystal water enlarge the interlayer distance to enhance the insertion of Zn^2+,and some sodium ions are replaced with Zn^2+ in the first cycle to further stabilize the layered structure for subsequent reversible Zn^2+/H^+ insertion/extraction,resulting in exceptional specific capacities and satisfactory structural stabilities.Additionally,a pseudo-capacitance derived from the surface-adsorbed Na^+ also contributes to the electrochemical performances.The NMOH cathode not only delivers high reversible capacities of 389.8 and 87.1 mA h g^−1 at current densities of 200 and 1500 mA g^−1,respectively,but also maintains a good long-cycling performance of 201.6 mA h g^−1 at a high current density of 500 mA g^−1 after 400 cycles,which makes the NMOH cathode competitive for practical applications.展开更多
Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are c...Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.展开更多
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedint...The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedinterlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.展开更多
This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersio...This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.展开更多
This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The exp...This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The explicit dispersion relations are derived for the two cases when the propagation directions of SH waves are normal to the interface and parallel to the interface, respectively. The asymptotic expressions for dispersion relations are also given when the wave number is extremely small. Numerical results for stop band effect and phase velocity are presented for a periodic system of alternating BaTiO3 and Terfenol-D layers. The influence of volume fraction on stop band effect and dispersion behaviors is discussed and revealed.展开更多
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor...Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.展开更多
Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation ...Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation kinetics of Zn2+pose challenges for further development.Herein,highly reversible aqueous ZIBs are constructed with layered hydrated vanadium oxide as a cathode material.The electrochemical performances are further tested with the optimized electrolyte of 3M Zn(CF3SO3)2 and a cut-off voltage of 0.4 to 1.3 V,exhibiting a remarkable capacity of 290mAh g−1 at 0.5Ag−1,and long-term cycling stability at high current density.Furthermore,the Zn2+storage mechanism of V3O7⋅H2O is recognized as a highly reversible(de)intercalation process with good structural stability,implying the potential application in the field of large-scale energy storage.展开更多
基金supported by the National 973 Key Development Program for Basic Research of China(S/N: 2006CB202308)the National Natural Science Foundation of China(Grant No.40972088)
文摘The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts vary in number, type and reserves, but the mechanism was rarely researched before. Therefore, an explanation of the mechanism will promote petroleum exploration in Tazhong paleouplift. After studying the evolution and reservoir distribution of the Tazhong paleouplift, it is concluded that the evolution in late Caledonian, late Hercynian and Himalayan periods resulted in the upper and the lower structural layers. It is also defined that in the upper structural layer, structural and stratigraphic overlap reservoirs are developed at the top and the upper part of the paleouplift, which are dominated by oil reservoirs, while for the lower structural layer, lithological reservoirs are developed in the lower part of the paleouplift, which are dominated by gas reservoirs, and more reserves are discovered in the lower structural layer than the upper. Through a comparative analysis of accumulation conditions of the upper and the lower structural layers, the mechanism of enrichment differences is clearly explained. The reservoir and seal conditions of the lower structural layer are better than those of the upper layer, which is the reason why more reservoirs have been found in the former. The differences in the carrier system types, trap types and charging periods between the upper and the lower structural layers lead to differences in the reservoir types and distribution. An accumulation model is established for the Tazhong paleouplift. For the upper structural layer, the structural reservoirs and the stratigraphic overlap reservoirs are formed at the upper part of the paleouplift, while for the lower structural layer, the weathering crust reservoirs are formed at the top, the reef-flat reservoirs are formed on the lateral margin, the karst and inside reservoirs are formed in the lower part of the paleouplift.
文摘The coupling agents content and thickness on glass fiber (GF) surfaces which have been treated with silanes and titanates under different conditions are tested by means of XRF (X-Ray Fluorescent spectrometry). And the rheological characteristics of the dispersed systems prepared from the above glass fibers combined with unsaturated polyester resin (UP) are discussed. The results show that the rigidity of the internal layers of silane coupling agent absorbed by glass surfaces is greater than the one of the external layers; while the effect of the titanate coupling agents on the rheolo- gical characteristics of the system is approximately the same in each structural layer, that is due to the fact that both the internal and external layers of titanates on glass surfaces have the similar flexible structures.
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB821404the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2016YFA0300404+1 种基金the National Natural Science Foundation of China under Grant Nos 11474323,11604372,11274368,91221102,11190022,11674326 and 91422303the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020000
文摘The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.
基金supported by a grant from the Subway Fine Dust Reduction Technology Development Project of the Ministry of Land Infrastructure and Transport,Republic of Korea(21QPPWB152306-03)the Basic Science Research Capacity Enhancement Project through a Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education of the Republic of Korea(2019R1A6C1010016)。
文摘Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515120013,2022B1515120066)National Natural Science Foundation of China (Nos.U2001218, 51875215)+1 种基金Key-Area Research and Development Program of Guangdong Province (2020B090923001)Special Support Foundation of Guangdong Province (No.2019TQ05Z110)。
文摘It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.
基金financially supported by the National Key Scientific Research Project(2022YFB2502300)China and the National Natural Science Foundation of China(52071085)。
文摘The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can contribute extra capacity to increase energy density,but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release.In this work,reversible Mn^(2+)/Mn^(4+)redox is realized in a P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)cathode material with high specific capacity and structure stability via Co substitution.The contribution of oxygen redox is suppressed significantly by reversible Mn^(2+)/Mn^(4+)redox without sacrificing capacity,thus reducing lattice oxygen release and improving the structure stability.Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5-4.5 V vs.Na^(+)/Na even at 10 C and after long-term cycling.It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range.The synergistic contributions of Mn^(2+)/Mn^(4+),Co^(2+)/Co^(3+),and O^(2-)/(O_n)^(2-)redox in P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)lead to a high reversible capacity of 215.0 m A h g^(-1)at 0.1 C with considerable cycle stability.The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.
文摘In this study,we performed first-principles calculations using the VASP(Vienna Ab initio Simulation)software package to investigate the crystal structure,electronic structure,and optical properties of a new layered ternary metal chalcogenide,Eu_(2)InTe_(5).Our results show that Eu_(2)InTe_(5) is a non-zero-gap metal with a layered structure characterized by strong intra-layer atomic bonding and weak inter-layer interaction,which suggests its potential application as a nanomaterial.We also studied the optical properties,including the absorption coefficient,imaginary and real parts of the complex dielectric constant,and found that Eu_(2)InTe_(5) exhibits strong photoresponse characteristics at the junction of ultraviolet and visible light as well as blue-green light,with peaks at wavelengths of 389 nm and 477 nm.This suggests that it could be used in the development of UV(ultraviolet)detectors and other optoelectronic devices.Furthermore,due to its strong absorption,low loss,and low reflectivity,Eu_(2)InTe_(5) has the potential to be used as a promising photovoltaic absorption layer in solar cells.
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(07JJ6082)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy in Central South University,China
文摘Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.
基金Projects(51271040,51171031)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction is Ni3Si/(T+γ)/γ/…T/γ/Ni4Zn12Si3/γ/…Ni4Zn12Si3/γ/Ni4Zn12Si3/δ…/Ni4Zn12Si3/δ/liquid-Zn, and the diffusion path in solid-vapor reaction is Ni3Si/θ/(T+γ)/γ/…/T/γ/…T/γ/vapor-Zn. With increasing Zn diffusion flux, the diffusion reaction path moves toward the Zn-rich direction, and the distance from the Ni3Si substrate to the periodic layer pair nearest to the interface decreases. In the initial stage of both reactions,γphase nucleates and grows within T matrix phase at first, and then conjuncts together to form a band to reduce the surface energy. Based on the experimental results and diffusion kinetics analysis, the microstructure differences were compared and the formation mechanism of the periodic layered structure in Ni3Si/Zn system was discussed.
基金sponsored jointly by the Chinese Special Scientific Research Project for Public Interest (Grant No. GYHY200906008)the National Natural Science Foundation of China (Grant No.40675013)+1 种基金the Science and Technology Project of Guangdong Province (Grant No. 2008B030303072)the Meteorological Sciences Research Project of the Weather Bu-reau of Guangdong Province (Grant No. 201003)
文摘Using boundary layer data with regard to sea fog observed at the Science Experiment Base for Marine Meteorology at Bohe,Guangdong Province,the structure of the atmospheric boundary layer and the characteristics of the tops of the fog and the clouds were analyzed.In addition,the effects of advection,radiation,and turbulence during sea fog were also investigated.According to the stability definition of saturated,wet air,the gradient of the potential pseudo-equivalent temperature equal to zero was defined as the thermal turbulence interface.There is evidence to suggest that two layers of turbulence exist in sea fog.Thermal turbulence produced by long-wave radiation is prevalent above the thermal turbulence interface,whereas mechanical turbulence aroused by wind shear is predominant below the interface.The height of the thermal turbulence interface was observed between 180 m and 380 m.Three important factors are closely related to the development of the top of the sea fog:(1) the horizontal advection of the water vapor,(2) the long-wave radiation of the fog top,and(3) the movement of the vertical turbulence.Formation,development,and dissipation are the three possible phases of the evolution of the boundary-layer structure during the sea fog season.In addition,the thermal turbulence interface is the most significant turbulence interface during the formation and development periods;it is maintained after sea fog rises into the stratus layer.
基金supported by the National Natural Science Foundation of China (21573083)1000 Young Talent (to Deli Wang)the Innovation Research Funds of HuaZhong University of Science and Technology (2017KFYXJJ164)。
文摘Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.
基金Financial support from the National Natural Science Foundation of China (51972016, 51533001)the National Key Research and Development Program of China (2016YFC0801302)State Key Laboratory of Organic-Inorganic Composites (oic-201801002)
文摘Mn-based rechargeable aqueous zinc-ion batteries(ZIBs)are highly promising because of their high operating voltages,attractive energy densities,and eco-friendliness.However,the electrochemical performances of Mn-based cathodes usually suffer from their serious structure transformation upon charge/discharge cycling.Herein,we report a layered sodium-ion/crystal water co-intercalated Birnessite cathode with the formula of Na0.55Mn2O4·0.57H2O(NMOH)for high-performance aqueous ZIBs.A displacement/intercalation electrochemical mechanism was confirmed in the Mn-based cathode for the first time.Na+and crystal water enlarge the interlayer distance to enhance the insertion of Zn^2+,and some sodium ions are replaced with Zn^2+ in the first cycle to further stabilize the layered structure for subsequent reversible Zn^2+/H^+ insertion/extraction,resulting in exceptional specific capacities and satisfactory structural stabilities.Additionally,a pseudo-capacitance derived from the surface-adsorbed Na^+ also contributes to the electrochemical performances.The NMOH cathode not only delivers high reversible capacities of 389.8 and 87.1 mA h g^−1 at current densities of 200 and 1500 mA g^−1,respectively,but also maintains a good long-cycling performance of 201.6 mA h g^−1 at a high current density of 500 mA g^−1 after 400 cycles,which makes the NMOH cathode competitive for practical applications.
基金The project supported by National Natural Science Foundation of China (10632020, 10672017 and 20451057)
文摘Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.
基金the National Science Foundation for Excellent Young Investigators(10325208)the National Natural Science Foundation of China(10432030)the China Postdoctoral Science Foundation(2004036018)
文摘The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedinterlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.
基金supported by the National Natural Science Foundation of China(Nos.10672108 and 10632020)the key project of the Ministry of Education of China(No.206014).
文摘This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.
基金supported by the National Natural Science Foundation of China (Nos.10672108,10572069 and 10820101048)
文摘This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The explicit dispersion relations are derived for the two cases when the propagation directions of SH waves are normal to the interface and parallel to the interface, respectively. The asymptotic expressions for dispersion relations are also given when the wave number is extremely small. Numerical results for stop band effect and phase velocity are presented for a periodic system of alternating BaTiO3 and Terfenol-D layers. The influence of volume fraction on stop band effect and dispersion behaviors is discussed and revealed.
基金Supported by the National Key Technologies R&D Program (2011BAE28B01) and the National Natural Science Foundation of China (21276016).
文摘Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.
基金This study was supported by the National Natural Science Foundation of China(Grant no.51932011,51972346,51802356,and 51872334)Innovation-Driven Project of Central South University(No.2020CX024).
文摘Aqueous Zn-ion batteries(ZIBs)hold great potential in large-scale energy storage systems due to the merits of low-cost and high safety.However,the unstable structure of cathode materials and sluggish(de)intercalation kinetics of Zn2+pose challenges for further development.Herein,highly reversible aqueous ZIBs are constructed with layered hydrated vanadium oxide as a cathode material.The electrochemical performances are further tested with the optimized electrolyte of 3M Zn(CF3SO3)2 and a cut-off voltage of 0.4 to 1.3 V,exhibiting a remarkable capacity of 290mAh g−1 at 0.5Ag−1,and long-term cycling stability at high current density.Furthermore,the Zn2+storage mechanism of V3O7⋅H2O is recognized as a highly reversible(de)intercalation process with good structural stability,implying the potential application in the field of large-scale energy storage.