期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
PGSLM:Edge-Enabled Probabilistic Graph Structure Learning Model for Traffic Forecasting in Internet of Vehicles
1
作者 Xiaozhu Liu Jiaru Zeng +1 位作者 Rongbo Zhu Hao Liu 《China Communications》 SCIE CSCD 2023年第4期270-286,共17页
With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simu... With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simultaneously.To enhance the forecasting performance,a novel edge-enabled probabilistic graph structure learning model(PGSLM)is proposed,which learns the graph structure and parameters by the edge sensing information and discrete probability distribution on the edges of the traffic road network.To obtain the spatio-temporal dependencies of traffic data,the learned dynamic graphs are combined with a predefined static graph to generate the graph convolution part of the recurrent graph convolution module.During the training process,a new graph training loss is introduced,which is composed of the K nearest neighbor(KNN)graph constructed by the traffic feature tensors and the graph structure.Detailed experimental results show that,compared with existing models,the proposed PGSLM improves the traffic prediction performance in terms of average absolute error and root mean square error in IoV. 展开更多
关键词 edge computing traffic forecasting graph convolutional network graph structure learning Internet of Vehicles
下载PDF
Self-Awakened Particle Swarm Optimization BN Structure Learning Algorithm Based on Search Space Constraint
2
作者 Kun Liu Peiran Li +3 位作者 Yu Zhang Jia Ren Xianyu Wang Uzair Aslam Bhatti 《Computers, Materials & Continua》 SCIE EI 2023年第9期3257-3274,共18页
To obtain the optimal Bayesian network(BN)structure,researchers often use the hybrid learning algorithm that combines the constraint-based(CB)method and the score-and-search(SS)method.This hybrid method has the proble... To obtain the optimal Bayesian network(BN)structure,researchers often use the hybrid learning algorithm that combines the constraint-based(CB)method and the score-and-search(SS)method.This hybrid method has the problemthat the search efficiency could be improved due to the ample search space.The search process quickly falls into the local optimal solution,unable to obtain the global optimal.Based on this,the Particle SwarmOptimization(PSO)algorithm based on the search space constraint process is proposed.In the first stage,the method uses dynamic adjustment factors to constrain the structure search space and enrich the diversity of the initial particles.In the second stage,the update mechanism is redefined,so that each step of the update process is consistent with the current structure which forms a one-to-one correspondence.At the same time,the“self-awakened”mechanism is added to prevent precocious particles frombeing part of the best.After the fitness value of the particle converges prematurely,the activation operation makes the particles jump out of the local optimal values to prevent the algorithmfromconverging too quickly into the local optimum.Finally,the standard network dataset was compared with other algorithms.The experimental results showed that the algorithmcould find the optimal solution at a small number of iterations and a more accurate network structure to verify the algorithm’s effectiveness. 展开更多
关键词 Bayesian network structure learning particle swarm optimization
下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
3
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 Bayesian network structure learning ordering search space graph search space prior constraint
下载PDF
Application of CS-PSO algorithm in Bayesian network structure learning 被引量:3
4
作者 LI Jun-wu LI Guo-ning ZHANG Ding 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期94-102,共9页
In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particl... In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particle swarm optimization(PSO)is selected.Combined with the characteristics of BN structure,a BN structure learning algorithm of CS-PSO is proposed.Firstly,the CS algorithm is improved from the following three aspects:the maximum spanning tree is used to guide the initialization direction of the CS algorithm,the fitness of the solution is used to adjust the optimization and abandoning process of the solution,and PSO algorithm is used to update the position of the CS algorithm.Secondly,according to the structure characteristics of BN,the CS-PSO algorithm is applied to the structure learning of BN.Finally,chest clinic,credit and car diagnosis classic network are utilized as the simulation model,and the modeling and simulation comparison of greedy algorithm,K2 algorithm,CS algorithm and CS-PSO algorithm are carried out.The results show that the CS-PSO algorithm has fast convergence speed,high convergence accuracy and good stability in the structure learning of BN,and it can get the accurate BN structure model faster and better. 展开更多
关键词 Bayesian network structure learning cuckoo search and particle swarm optimization(CS-PSO)
下载PDF
Few-shot node classification via local adaptive discriminant structure learning
5
作者 Zhe XUE Junping DU +3 位作者 Xin XU Xiangbin LIU Junfu WANG Feifei KOU 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第2期135-143,共9页
Node classification has a wide range of application scenarios such as citation analysis and social network analysis.In many real-world attributed networks,a large portion of classes only contain limited labeled nodes.... Node classification has a wide range of application scenarios such as citation analysis and social network analysis.In many real-world attributed networks,a large portion of classes only contain limited labeled nodes.Most of the existing node classification methods cannot be used for few-shot node classification.To train the model effectively and improve the robustness and reliability of the model with scarce labeled samples,in this paper,we propose a local adaptive discriminant structure learning(LADSL)method for few-shot node classification.LADSL aims to properly represent the nodes in the attributed graphs and learn a metric space with a strong discriminating power by reducing the intra-class variations and enlargingginter-classdifferences.Extensiveexperiments conducted on various attributed networks datasets demonstrate that LADSL is superior to the other methods on few-shot node classification task. 展开更多
关键词 few-shot learning node classification graph neural network adaptive structure learning attention strategy
原文传递
Bi-objective evolutionary Bayesian network structure learning via skeleton constraint
6
作者 Ting WU Hong QIAN +2 位作者 Ziqi LIU Jun ZHOU Aimin ZHOU 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第6期111-123,共13页
Bayesian network is a popular approach to uncertainty knowledge representation and reasoning. Structure learning is the first step to learn a Bayesian network. Score-based methods are one of the most popular ways of l... Bayesian network is a popular approach to uncertainty knowledge representation and reasoning. Structure learning is the first step to learn a Bayesian network. Score-based methods are one of the most popular ways of learning the structure. In most cases, the score of Bayesian network is defined as adding the log-likelihood score and complexity score by using the penalty function. If the penalty function is set unreasonably, it may hurt the performance of structure search. Thus, Bayesian network structure learning is essentially a bi-objective optimization problem. However, the existing bi-objective structure learning algorithms can only be applied to small-scale networks. To this end, this paper proposes a bi-objective evolutionary Bayesian network structure learning algorithm via skeleton constraint (BBS) for the medium-scale networks. To boost the performance of searching, BBS introduces the random order prior (ROP) initial operator. ROP generates a skeleton to constrain the searching space, which is the key to expanding the scale of structure learning problems. Then, the acyclic structures are guaranteed by adding the orders of variables in the initial skeleton. After that, BBS designs the Pareto rank based crossover and skeleton guided mutation operators. The operators operate on the skeleton obtained in ROP to make the search more targeted. Finally, BBS provides a strategy to choose the final solution. The experimental results show that BBS can always find the structure which is closer to the ground truth compared with the single-objective structure learning methods. Furthermore, compared with the existing bi-objective structure learning methods, BBS is scalable and can be applied to medium-scale Bayesian network datasets. On the educational problem of discovering the influencing factors of students’ academic performance, BBS provides higher quality solutions and is featured with the flexibility of solution selection compared with the widely-used Bayesian network structure learning methods. 展开更多
关键词 Bayesian network structure learning multi-objective optimization conditional independence test
原文传递
BN-GEPSO:Learning Bayesian Network Structure Using Generalized Particle Swarm Optimization
7
作者 Muhammad Saad Salman Ibrahim M.Almanjahie +1 位作者 AmanUllah Yasin Ammara Nawaz Cheema 《Computers, Materials & Continua》 SCIE EI 2023年第5期4217-4229,共13页
At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer fr... At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer from the problem that when the nodes and edges increase,the structure learning difficulty increases and algorithms become inefficient.To solve this problem,heuristic optimization algorithms are used,which tend to find a near-optimal answer rather than an exact one,with particle swarm optimization(PSO)being one of them.PSO is a swarm intelligence-based algorithm having basic inspiration from flocks of birds(how they search for food).PSO is employed widely because it is easier to code,converges quickly,and can be parallelized easily.We use a recently proposed version of PSO called generalized particle swarm optimization(GEPSO)to learn bayesian network structure.We construct an initial directed acyclic graph(DAG)by using the max-min parent’s children(MMPC)algorithm and cross relative average entropy.ThisDAGis used to create a population for theGEPSO optimization procedure.Moreover,we propose a velocity update procedure to increase the efficiency of the algorithmic search process.Results of the experiments show that as the complexity of the dataset increases,our algorithm Bayesian network generalized particle swarm optimization(BN-GEPSO)outperforms the PSO algorithm in terms of the Bayesian information criterion(BIC)score. 展开更多
关键词 Bayesian network structure learning particle swarm optimization
下载PDF
Learning Bayesian network structure with immune algorithm 被引量:4
8
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure VACCINATION
下载PDF
A Structure Learning Algorithm for Bayesian Network Using Prior Knowledge 被引量:2
9
作者 徐俊刚 赵越 +1 位作者 陈健 韩超 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第4期713-724,共12页
Learning structure from data is one of the most important fundamental tasks of Bayesian network research. Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) har... Learning structure from data is one of the most important fundamental tasks of Bayesian network research. Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) hard problem. To solve this problem, many heuristic algorithms have been proposed, and some of them learn Bayesian network structure with the help of different types of prior knowledge. However, the existing algorithms have some restrictions on the prior knowledge, such as quality restriction and use restriction. This makes it di?cult to use the prior knowledge well in these algorithms. In this paper, we introduce the prior knowledge into the Markov chain Monte Carlo (MCMC) algorithm and propose an algorithm called Constrained MCMC (C-MCMC) algorithm to learn the structure of the Bayesian network. Three types of prior knowledge are defined: existence of parent node, absence of parent node, and distribution knowledge including the conditional probability distribution (CPD) of edges and the probability distribution (PD) of nodes. All of these types of prior knowledge are easily used in this algorithm. We conduct extensive experiments to demonstrate the feasibility and effectiveness of the proposed method C-MCMC. 展开更多
关键词 Bayesian network structure learning Markov chain Monte Carlo prior knowledge
原文传递
BIC-based node order learning for improving Bayesian network structure learning 被引量:1
10
作者 Yali LV Junzhong MIAO +2 位作者 Jiye LIANG Ling CHEN Yuhua QIAN 《Frontiers of Computer Science》 SCIE EI CSCD 2021年第6期95-108,共14页
Node order is one of the most important factors in learning the structure of a Bayesian network(BN)for probabilistic reasoning.To improve the BN structure learning,we propose a node order learning algorithmbased on th... Node order is one of the most important factors in learning the structure of a Bayesian network(BN)for probabilistic reasoning.To improve the BN structure learning,we propose a node order learning algorithmbased on the frequently used Bayesian information criterion(BIC)score function.The algorithm dramatically reduces the space of node order and makes the results of BN learning more stable and effective.Specifically,we first find the most dependent node for each individual node,prove analytically that the dependencies are undirected,and then construct undirected subgraphs UG.Secondly,the UG-is examined and connected into a single undirected graph UGC.The relation between the subgraph number and the node number is analyzed.Thirdly,we provide the rules of orienting directions for all edges in UGC,which converts it into a directed acyclic graph(DAG).Further,we rank the DAG’s topology order and describe the BIC-based node order learning algorithm.Its complexity analysis shows that the algorithm can be conducted in linear time with respect to the number of samples,and in polynomial time with respect to the number of variables.Finally,experimental results demonstrate significant performance improvement by comparing with other methods. 展开更多
关键词 probabilistic reasoning Bayesian networks node order learning structure learning BIC scores V-structure
原文传递
Efficient and effective Bayesian network local structure learning 被引量:1
11
作者 Jianjun YANG Yunhai TONG +1 位作者 Zitian WANG Shaohua TAN 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第4期527-536,共10页
In this paper, we propose a more efficient Bayesian network structure learning algorithm under the framework of score based local learning (SLL). Our algorithm significantly improves computational efficiency by rest... In this paper, we propose a more efficient Bayesian network structure learning algorithm under the framework of score based local learning (SLL). Our algorithm significantly improves computational efficiency by restricting the neighbors of each variable to a small subset of candidates and storing necessary information to uncover the spouses, at the same time guaranteeing to find the optimal neighbor set in the same sense as SLL. The algorithm is the- oretically sound in the sense that it is optimal in the limit of large sample size. Empirical results testify its improved speed without loss of quality in the learned structures. 展开更多
关键词 local structure learning Bayesian network Markov blanket
原文传递
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
12
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 Bayesian network structure learning exact learning algorithm causal constraint
下载PDF
Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor 被引量:4
13
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1925-1934,共10页
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring... In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP. 展开更多
关键词 Adaptive soft sensor Just-in-time learning Supervised local and non-local structure preserving projections Locality preserving projections Database monitoring
下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
14
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 Bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
下载PDF
A Constrained Local Neighborhood Approach for Efficient Markov Blanket Discovery in Undirected Independent Graphs
15
作者 Kun Liu Peiran Li +4 位作者 Yu Zhang JiaRen Ming Li Xianyu Wang Cong Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2535-2555,共21页
When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constr... When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constraint-based methods typically rely on the results of conditional independence tests.However,excessive reliance on these test results can lead to a series of problems,including increased computational complexity and inaccurate results,especially when dealing with large-scale networks where performance bottlenecks are particularly evident.To overcome these challenges,we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected independence graphs.This method uses the Markov blanket discovery algorithm to refine the constraints in the initial search space,sets an appropriate constraint radius,thereby reducing the initial computational cost of the algorithm and effectively narrowing the initial solution range.Specifically,the method first determines the local neighborhood space to limit the search range,thereby reducing the number of possible graph structures that need to be considered.This process not only improves the accuracy of the search space constraints but also significantly reduces the number of conditional independence tests.By performing conditional independence tests within the local neighborhood of each node,the method avoids comprehensive tests across the entire network,greatly reducing computational complexity.At the same time,the setting of the constraint radius further improves computational efficiency while ensuring accuracy.Compared to other algorithms,this method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.Experimental simulation results show that,this method has significant advantages in obtaining the structure of undirected independence graphs,not only maintaining an accuracy of over 96%but also reducing the number of conditional independence tests by at least 50%.This significant performance improvement is due to the effective constraint on the search space and the fine control of computational costs. 展开更多
关键词 Bayesian network structure learning Markov blanket conditional independence
下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
16
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 Bayesian networks Genetic algorithm structure learning Equivalent class
下载PDF
Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization 被引量:3
17
作者 Chunfeng Wang Sanyang Liu Mingmin Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期784-790,共7页
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt... Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm. 展开更多
关键词 Bayesian network structure learning ant colony optimization unconstrained optimization
下载PDF
Need for education of psychiatric evaluation of offenders with mental disorders:A questionnaire survey for Japanese designated psychiatrists
18
作者 Akihiro Shiina Tomihisa Niitsu +1 位作者 Masaomi Iyo Chiyo Fujii 《World Journal of Psychiatry》 SCIE 2024年第5期726-734,共9页
BACKGROUND The management of offenders with mental disorders has been a significant concern in forensic psychiatry.In Japan,the introduction of the Medical Treatment and Supervision Act in 2005 addressed the issue.How... BACKGROUND The management of offenders with mental disorders has been a significant concern in forensic psychiatry.In Japan,the introduction of the Medical Treatment and Supervision Act in 2005 addressed the issue.However,numerous psychiatric patients at risk of violence still find themselves subject to the administrative involuntary hospitalization(AIH)scheme,which lacks clarity and updated standards.AIM To explore current as well as optimized learning strategies for risk assessment in AIH decision making.METHODS We conducted a questionnaire survey among designated psychiatrists to explore their experiences and expectations regarding training methods for psychiatric assessments of offenders with mental disorders.RESULTS The findings of this study’s survey suggest a prevalent reliance on traditional learning approaches such as oral education and on-the-job training.CONCLUSION This underscores the pressing need for structured training protocols in AIH consultations.Moreover,feedback derived from inpatient treatment experiences is identified as a crucial element for enhancing risk assessment skills. 展开更多
关键词 Forensic psychiatry Administrative involuntary hospitalization Psychiatric assessment Risk assessment Mental disorders Training protocols Clinical practice structured learning Feedback mechanisms Program development
下载PDF
Dependence Tree Structure Estimation via Copula
19
作者 Jian Ma Zeng-Qi Sun +1 位作者 Sheng Chen Hong-Hai Liu 《International Journal of Automation and computing》 EI 2012年第2期113-121,共9页
We propose an approach for dependence tree structure learning via copula. A nonparametric algorithm for copula estimation is presented. Then a Chow-Liu like method based on dependence measure via copula is proposed to... We propose an approach for dependence tree structure learning via copula. A nonparametric algorithm for copula estimation is presented. Then a Chow-Liu like method based on dependence measure via copula is proposed to estimate maximum spanning bivariate copula associated with bivariate dependence relations. The main advantage of the approach is that learning with empirical copula focuses on dependence relations among random variables, without the need to know the properties of individual variables as well as without the requirement to specify parametric family of entire underlying distribution for individual variables. Experiments on two real-application data sets show the effectiveness of the proposed method. 展开更多
关键词 COPULA empirical copula DEPENDENCE tree structure learning probability distribution.
下载PDF
COMBINED ALGORITHM FOR THE ESSENTIAL GRAPH OF BAYESIAN NETWORK STRUCTURES
20
作者 Li Binghan Liu Sanyang Li Zhanguo 《Journal of Electronics(China)》 2010年第6期822-829,共8页
Learning Bayesian network structure is one of the most important branches in Bayesian network. The most popular graphical representative of a Bayesian network structure is an essential graph. This paper shows a combin... Learning Bayesian network structure is one of the most important branches in Bayesian network. The most popular graphical representative of a Bayesian network structure is an essential graph. This paper shows a combined algorithm according to the three rules for finding the essential graph of a given directed acyclic graph. Moreover, the complexity and advantages of this combined algorithm over others are also discussed. The aim of this paper is to present the proof of the correctness of the combined algorithm. 展开更多
关键词 Bayesian networks structure learning Equivalence class Essential graph
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部