Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves ...Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.展开更多
目的探讨金匮肾气丸联合维生素D钙片治疗2型糖尿病性骨质疏松症(T2DOP)的临床疗效,以及对患者血清骨转换标志物、白细胞介素-1β(IL-1β)、基质金属蛋白酶-9(MMP-9)、超氧化物歧化酶(SOD)水平的影响。方法选择该院2021年1月至2022年10...目的探讨金匮肾气丸联合维生素D钙片治疗2型糖尿病性骨质疏松症(T2DOP)的临床疗效,以及对患者血清骨转换标志物、白细胞介素-1β(IL-1β)、基质金属蛋白酶-9(MMP-9)、超氧化物歧化酶(SOD)水平的影响。方法选择该院2021年1月至2022年10月收治的84例T2DOP患者作为研究对象,按随机数字表法将患者分为观察组(42例)和对照组(42例)。观察组采用金匮肾气丸联合维生素D钙片治疗,对照组单用维生素D钙片治疗,治疗24周后比较两组临床疗效。治疗前后检测两组患者第1~4腰椎(L 1~4)、股骨颈的骨密度(BMD),并对两组患者进行疼痛视觉模拟量表(VAS)评分。治疗前后检测两组患者的糖代谢指标[空腹血糖(FPG)、餐后2 h血糖(2 h PG)、糖化血红蛋白(HbA1c)]、血清骨转换标志物{25羟基维生素D[25(OH)D]、β-胶原特殊序列(β-Crosslaps)、总Ⅰ型胶原氨基端延长肽(Total-P1NP)、骨钙素N端中分子片段(N-MID)}以及IL-1β、MMP-9、SOD水平。统计两组不良反应发生情况。结果观察组总有效率为95.24%,明显高于对照组的76.19%(P<0.05)。治疗后,两组L 1~4 BMD以及血清25(OH)D、Total-P1NP、N-MID、SOD水平均高于治疗前(P<0.05),VAS评分、FPG、2 h PG、HbA1c以及血清β-Crosslaps、IL-1β、MMP-9水平均低于治疗前(P<0.05)。治疗后,观察组L 1~4 BMD以及血清25(OH)D、Total-P1NP、N-MID、SOD水平均高于对照组(P<0.05),VAS评分、FPG、2 h PG、HbA1c以及血清β-Crosslaps、IL-1β、MMP-9水平均低于对照组(P<0.05)。两组不良反应总发生率比较,差异无统计学意义(P>0.05)。结论金匮肾气丸联合维生素D钙片治疗T2DOP能有效调节患者血清骨转换标志物、IL-1β、MMP-9、SOD水平,改善糖代谢与骨代谢,提高临床疗效。展开更多
Superoxide dismutases(SODs) were purified to homogeneity from Allium Sativum by means of ammonium sulfate precipitation and column chromatography with DEAE-cellulose(DE52) and Sephadex G-75. Based on sodium dodecyl su...Superoxide dismutases(SODs) were purified to homogeneity from Allium Sativum by means of ammonium sulfate precipitation and column chromatography with DEAE-cellulose(DE52) and Sephadex G-75. Based on sodium dodecyl sulfate\|polyacrylamide gel electrophoresis(SDS-AGE), Allium Sativum is predicted to contain four SODs. The molecular weights of the native SODs are 41 3 kD, 37 0 kD, 35 2 kD and 31 0 kD, which consist of subunits of 20 7 kD, 18 4 kD, 17 7 kD and 15 4 kD respectively. Because of their specific sensitivity to hydrogen peroxide, cyanogens potassium and chloroform\|alcohol, the SODs in Allium Sativum appear to be Cu, Zn-SOD isoenzymes. The isoelectric analysis indicates that three of the four isoenzymes are acidic proteins with isoelectric points at pH 3 5, 3 7 and 4 0, respectively, and the fourth one is a basic protein with isoeletric point at pH 8 5.展开更多
Mammalian cells express two isoforms of Cu- and Zn-containing superoxide dismutases(SODs), CuZn-SOD and extracellular SOD(EC-SOD), involved in the defense system against reactive oxygen species(ROS). The two SOD...Mammalian cells express two isoforms of Cu- and Zn-containing superoxide dismutases(SODs), CuZn-SOD and extracellular SOD(EC-SOD), involved in the defense system against reactive oxygen species(ROS). The two SODs have structurally homologous centre domain with distinct N- and C-terminuses, resulting in the different characteristics of the structure and function of the two molecules. We generated a hybrid SOD molecule(namely hy- SOD) via replacing the N- and C-terminuses of hCuZnSOD with the counterparts of hEC-SOD. The hySOD was expressed in host Pichia pastoris and the purified protein was a dimer with a molecular weight of about 34000. A series of activity analyses indicates that the hySOD is similar to hEC-SOD in heat-stability, and has the activity of protecting the host cell against heat shock and oxidative stress. Our results show evidence for the study on the compound activity of multiple SOD molecules, and may be important for understanding the relationship between structure and function of hEC-SOD and hCuZnSOD.展开更多
Increase uric acid levels have been found in oxidative stress. Urate radicals do not react with oxygen to form another peroxy radical, thus increasing the efficacy of uric acid as an antioxidant. Therefore, this study...Increase uric acid levels have been found in oxidative stress. Urate radicals do not react with oxygen to form another peroxy radical, thus increasing the efficacy of uric acid as an antioxidant. Therefore, this study is designed to measure the level of uric acids and find out the relationship of uric acid with superoxide dismutase in induced hyperuricemic model. Forty male albino rats with an average weight of 180 ± 2 g were selected. The rats were grouped. The animals were fed on standard diet and given tap water ad libitum until treatment. Albino rats were divided into four groups. Group A(10)-control given only standard diet, group B(10) fed on 60% fructose with standard diet , group C(10) fed on fructose, standard diet and intraperitonially oxonic acid 250 mg/kg and group D (10) only on injection intraperotonially oxonic acid 250 mg/kg. At the end of study 10 mL of blood was drawn from heart of rats. Then blood was estimated for superoxide dismutase and uric acids done by kit methods randox-manual/Rx monza UA230/UA 233. Results: In Group C superoxide dismutase was found to be 32 % (244 mg/dL ± 2.23) more than control. In the same group the uric acid concentration was highly significantly correlated with control. Conclusion: The uric acid concentration increases when we take fructose up to 60% in our diet. It also increases superoxide dismutase concentration. More than this value may have inverse effect on the uric acid level and its role as an antioxidant may become inversed.展开更多
Superoxide dismutase (SOD) is one of the most important antioxidant defense enzymes, and is considered as the first line against oxidative stress. In this study, we cloned a mitochondrial manganese (Mn) SOD (mMn...Superoxide dismutase (SOD) is one of the most important antioxidant defense enzymes, and is considered as the first line against oxidative stress. In this study, we cloned a mitochondrial manganese (Mn) SOD (mMnSOD) cDNA from the ridgetail white prawn Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) methods. The fulMength cDNA for mMnSOD was 1 014-bp long, containing a 5'-untranslated region (UTR) of 37-bp, a 3'-UTR of 321-bp with a poly (A) tail, and included a 657-bp open reading frame encoding a protein of 218 amino acids with a 16-amino-acid signal peptide. The protein had a calculated molecular weight of 23.87 kDa and a theoretical isoelectric point of 6.75. The mMnSOD sequence included two putative N-glycosylation sites (NHT and NLS), the MnSOD signature sequence 18~DVWEHAYY^87, and four putative Mn binding sites (H48, H96, D180, and H184). Sequence comparison showed that the mMnSOD deduced amino acid sequence of E. carinicauda shared 97%, 95%, 89%, 84%, 82%, 72%, and 69% identity with that ofMacrobrachium rosenbergii, Macrobrachium nipponense, Fenneropeneaus chinensis, Callinectes sapidus, Perisesarma bidens, Danio rerio, and Homo sapiens, resectively. Quantitative real-time RT-PCR analysis showed that mMnSOD transcripts were present in all E. carinicauda tissues examined, with the highest levels in the hepatopancreas. During an ammonia stress treatment, the transcript levels of mMnSOD and cMnSOD were up-regulated at 12 h in hemocytes and at 24 h in the hepatopancreas. As the duration of the ammonia stress treatment extended to 72 h, the transcript levels of mMnSOD and cMnSOD significantly decreased both in hemocytes and hepatopancreas. These findings indicate that the SOD system is induced to respond to acute ammonia stress, and may be involved in environmental stress responses in E. carinicauda.展开更多
Plants produce reactive oxygen species(ROS) to defend pathogens. To counteract this attack, certain pathogens express superoxide dismutases(SODs) to scavenge host-derived ROS. However, the roles of SODs in Verticilliu...Plants produce reactive oxygen species(ROS) to defend pathogens. To counteract this attack, certain pathogens express superoxide dismutases(SODs) to scavenge host-derived ROS. However, the roles of SODs in Verticillium dahliae, an important vascular pathogen, are not clear. Our previous study has shown that a putative extracellular SOD(VdSOD5) of V. dahliae is significantly induced by culturing in cotton tissues, suggesting that VdSOD5 may play an important role in host–pathogen interactions and virulence. Here, we showed that VdSOD5 encoded a superoxide dismutase with a cofactor copper-binding site and a functional signal peptide that can conduct protein secretion in an invertase-mutated yeast strain. The mutations in VdSOD5(ΔVdSOD5) did not change the normal vegetative growth and conidial production but reduced the virulence of V. dahliae on susceptible host cotton. Further studies showed that the transcription of Vd SOD5 was significantly up-regulated during the early stage of infection, and the loss-of-function of VdSOD5 decreased culture filtrate and fungal tissue SOD activities of V. dahliae by 74 and 28%, respectively. Compared to the wild-type strain Vd991, the ΔVdSOD5 showed the same sensitivity to the intracellular ROS generator menadione. Furthermore, nitroblue tetrazolium(NBT) staining demonstrated that VdSOD5 functioned in the detoxification of superoxides generated by host roots during infection. These results suggest that VdSOD5 of V. dahliae is an important virulence factor, secreted out of cells to combat host-derived ROS.展开更多
A superoxide dismutase( SOD ) was purified to homogeneity from fresh camellia pollen by means of ammonium sulfate precipitation and column chromatography with DEAE-cellulose( DE52 ), Sephadex G-100 and phenyl seph...A superoxide dismutase( SOD ) was purified to homogeneity from fresh camellia pollen by means of ammonium sulfate precipitation and column chromatography with DEAE-cellulose( DE52 ), Sephadex G-100 and phenyl sepharose^TM 6 Fast Flow columns. Its specific activity could reach to 4034 U/mg protein and it was determined to be Cu/ Zn-SOD according to its different sensitivities to different inhibitors. The molecular weight of the SOD and its subunit were 69500 and 34700, respectively, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE), which implicates that the SOD in camellia pollen is a dimmer composed of two identical subunits. The isoelectric point of the enzyme was determined to be 4. 1 by isoelectric focusing electrophoresis and the N-terminal amino acid was identified to be Gly by the DNS-Cl method. Its α-Helix was also calculated to be approximately 21.8% according to the circular dichroism(CD) spectra.展开更多
Background: Oxidative stress plays a crucial role in the pathogenesis and progression of many diseases, including cardiovascular disease (CVD) and diabetes mellitus. Oxidative stress results from an imbalance between ...Background: Oxidative stress plays a crucial role in the pathogenesis and progression of many diseases, including cardiovascular disease (CVD) and diabetes mellitus. Oxidative stress results from an imbalance between free radical formation and the protective antioxidant mechanisms. The latter mechanisms include superoxide dismutases (SODs) and glutathione peroxidases (GPx) that scavenge excessive ROS and protect cells against excess ROS production. The aim of current study was to determine the serum levels of SOD and serum GPx mRNA as well as the serum prooxidant-antioxidant balance in CVD patients. Method: A total of 103 subjects were recruited, with ≥50% stenosis (Angio+) or –). The expression levels of SOD and GPx in serum were measured using real time PCR. Biochemical-analyses (e.g., triglycerides;high-density lipo-protein cholesterol;low-density lipoprotein cholesterol;fasting-blood-glucose) were determined in all the subjects. Associations of SOD and GPx levels with biochemical and anthropometric characteristics were assessed together with evaluation of the serum pro-oxidant-antioxidant balance (PAB). Results: CVD subjects had a significantly higher level of fasting blood glucose (FBG), TC, LDL-C, TG and hs-CRP levels, as compared to control subjects. The level of serum PAB was significantly higher in the CVD group, 117.92 ± 35.51 and 110.65 ± 27.65 μg/dl in the angio– and angio+ groups, respectively compared to the control group (54.26 + 23.25). Additionally we observed that the SOD-3 level was higher in angio+ group versus control subjects. Conclusion: We have found that patients with CVD had a significantly higher prooxidant-antioxidant and SOD-3 levels. Further studies in larger multi-center setting are warranted to explore the value of emerging biomarker in CVD patients.展开更多
There are growing evidences on the role of adaptive mechanisms of all cell types in pathological processes: atherosclerosis, ischemic attack, bacterial infections, etc. All kinds of these processes involve as main mec...There are growing evidences on the role of adaptive mechanisms of all cell types in pathological processes: atherosclerosis, ischemic attack, bacterial infections, etc. All kinds of these processes involve as main mechanism oxidative stress. Aerobic organisms use oxygen in processes that accidentally or deliberately generate aggressive species for the biologic components in the form of radicals. Radicals were looked initially as “harmful” molecules and this is true for large quantities but in small or even moderate amounts these molecules prove to have a physiological role. Reactive species are highly reactive and as a consequence are short living species. Their impact is supposed to be limited in the proximity area of their formation. Instead recent evidences indicate their implications in cellular signaling suggesting that individual chemical properties of reactive species make a difference in their biological role. This paper presents superoxide, nitric oxide and peroxide radical generation under cellular changing conditions, the adapting behavior of the enzymes that synthesize and remove them as well as some therapeutic target in superoxide related pathology.展开更多
Superoxide dismutase (SOD)-deficient Escherichia coli OX326Acells are protected against chemically-induced oxidative stress by expression of the chaperonin GroESL. This protection is equivalent to expression of supero...Superoxide dismutase (SOD)-deficient Escherichia coli OX326Acells are protected against chemically-induced oxidative stress by expression of the chaperonin GroESL. This protection is equivalent to expression of superoxide dismutase even though GroESL has no inherent SOD activity. Co-overexpression of GroESL and SOD in the same cells results in higher protein yields of SOD and greater metallation of SOD when compared with expression of SOD alone. Greater metallation results in the higher specific activity of SOD that is observed in heat shock, and is not due to increased synthesis of SOD mRNA or protein.展开更多
文摘Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
文摘目的探讨金匮肾气丸联合维生素D钙片治疗2型糖尿病性骨质疏松症(T2DOP)的临床疗效,以及对患者血清骨转换标志物、白细胞介素-1β(IL-1β)、基质金属蛋白酶-9(MMP-9)、超氧化物歧化酶(SOD)水平的影响。方法选择该院2021年1月至2022年10月收治的84例T2DOP患者作为研究对象,按随机数字表法将患者分为观察组(42例)和对照组(42例)。观察组采用金匮肾气丸联合维生素D钙片治疗,对照组单用维生素D钙片治疗,治疗24周后比较两组临床疗效。治疗前后检测两组患者第1~4腰椎(L 1~4)、股骨颈的骨密度(BMD),并对两组患者进行疼痛视觉模拟量表(VAS)评分。治疗前后检测两组患者的糖代谢指标[空腹血糖(FPG)、餐后2 h血糖(2 h PG)、糖化血红蛋白(HbA1c)]、血清骨转换标志物{25羟基维生素D[25(OH)D]、β-胶原特殊序列(β-Crosslaps)、总Ⅰ型胶原氨基端延长肽(Total-P1NP)、骨钙素N端中分子片段(N-MID)}以及IL-1β、MMP-9、SOD水平。统计两组不良反应发生情况。结果观察组总有效率为95.24%,明显高于对照组的76.19%(P<0.05)。治疗后,两组L 1~4 BMD以及血清25(OH)D、Total-P1NP、N-MID、SOD水平均高于治疗前(P<0.05),VAS评分、FPG、2 h PG、HbA1c以及血清β-Crosslaps、IL-1β、MMP-9水平均低于治疗前(P<0.05)。治疗后,观察组L 1~4 BMD以及血清25(OH)D、Total-P1NP、N-MID、SOD水平均高于对照组(P<0.05),VAS评分、FPG、2 h PG、HbA1c以及血清β-Crosslaps、IL-1β、MMP-9水平均低于对照组(P<0.05)。两组不良反应总发生率比较,差异无统计学意义(P>0.05)。结论金匮肾气丸联合维生素D钙片治疗T2DOP能有效调节患者血清骨转换标志物、IL-1β、MMP-9、SOD水平,改善糖代谢与骨代谢,提高临床疗效。
基金Supported by the Chinese Universities Education Science"Ten- five" Program ( 2 0 0 2 ,2 0 - 5 8- 4 7)
文摘Superoxide dismutases(SODs) were purified to homogeneity from Allium Sativum by means of ammonium sulfate precipitation and column chromatography with DEAE-cellulose(DE52) and Sephadex G-75. Based on sodium dodecyl sulfate\|polyacrylamide gel electrophoresis(SDS-AGE), Allium Sativum is predicted to contain four SODs. The molecular weights of the native SODs are 41 3 kD, 37 0 kD, 35 2 kD and 31 0 kD, which consist of subunits of 20 7 kD, 18 4 kD, 17 7 kD and 15 4 kD respectively. Because of their specific sensitivity to hydrogen peroxide, cyanogens potassium and chloroform\|alcohol, the SODs in Allium Sativum appear to be Cu, Zn-SOD isoenzymes. The isoelectric analysis indicates that three of the four isoenzymes are acidic proteins with isoelectric points at pH 3 5, 3 7 and 4 0, respectively, and the fourth one is a basic protein with isoeletric point at pH 8 5.
文摘Mammalian cells express two isoforms of Cu- and Zn-containing superoxide dismutases(SODs), CuZn-SOD and extracellular SOD(EC-SOD), involved in the defense system against reactive oxygen species(ROS). The two SODs have structurally homologous centre domain with distinct N- and C-terminuses, resulting in the different characteristics of the structure and function of the two molecules. We generated a hybrid SOD molecule(namely hy- SOD) via replacing the N- and C-terminuses of hCuZnSOD with the counterparts of hEC-SOD. The hySOD was expressed in host Pichia pastoris and the purified protein was a dimer with a molecular weight of about 34000. A series of activity analyses indicates that the hySOD is similar to hEC-SOD in heat-stability, and has the activity of protecting the host cell against heat shock and oxidative stress. Our results show evidence for the study on the compound activity of multiple SOD molecules, and may be important for understanding the relationship between structure and function of hEC-SOD and hCuZnSOD.
文摘Increase uric acid levels have been found in oxidative stress. Urate radicals do not react with oxygen to form another peroxy radical, thus increasing the efficacy of uric acid as an antioxidant. Therefore, this study is designed to measure the level of uric acids and find out the relationship of uric acid with superoxide dismutase in induced hyperuricemic model. Forty male albino rats with an average weight of 180 ± 2 g were selected. The rats were grouped. The animals were fed on standard diet and given tap water ad libitum until treatment. Albino rats were divided into four groups. Group A(10)-control given only standard diet, group B(10) fed on 60% fructose with standard diet , group C(10) fed on fructose, standard diet and intraperitonially oxonic acid 250 mg/kg and group D (10) only on injection intraperotonially oxonic acid 250 mg/kg. At the end of study 10 mL of blood was drawn from heart of rats. Then blood was estimated for superoxide dismutase and uric acids done by kit methods randox-manual/Rx monza UA230/UA 233. Results: In Group C superoxide dismutase was found to be 32 % (244 mg/dL ± 2.23) more than control. In the same group the uric acid concentration was highly significantly correlated with control. Conclusion: The uric acid concentration increases when we take fructose up to 60% in our diet. It also increases superoxide dismutase concentration. More than this value may have inverse effect on the uric acid level and its role as an antioxidant may become inversed.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A409)the Modern AgroIndustry Technology Research System(No.CARS-47)+1 种基金the Special Fund for Independent Innovation of Shandong Province(No.2013CX80202)the Special Fund for Agro-Scientific Research in the Public Interest(No.201103034)
文摘Superoxide dismutase (SOD) is one of the most important antioxidant defense enzymes, and is considered as the first line against oxidative stress. In this study, we cloned a mitochondrial manganese (Mn) SOD (mMnSOD) cDNA from the ridgetail white prawn Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) methods. The fulMength cDNA for mMnSOD was 1 014-bp long, containing a 5'-untranslated region (UTR) of 37-bp, a 3'-UTR of 321-bp with a poly (A) tail, and included a 657-bp open reading frame encoding a protein of 218 amino acids with a 16-amino-acid signal peptide. The protein had a calculated molecular weight of 23.87 kDa and a theoretical isoelectric point of 6.75. The mMnSOD sequence included two putative N-glycosylation sites (NHT and NLS), the MnSOD signature sequence 18~DVWEHAYY^87, and four putative Mn binding sites (H48, H96, D180, and H184). Sequence comparison showed that the mMnSOD deduced amino acid sequence of E. carinicauda shared 97%, 95%, 89%, 84%, 82%, 72%, and 69% identity with that ofMacrobrachium rosenbergii, Macrobrachium nipponense, Fenneropeneaus chinensis, Callinectes sapidus, Perisesarma bidens, Danio rerio, and Homo sapiens, resectively. Quantitative real-time RT-PCR analysis showed that mMnSOD transcripts were present in all E. carinicauda tissues examined, with the highest levels in the hepatopancreas. During an ammonia stress treatment, the transcript levels of mMnSOD and cMnSOD were up-regulated at 12 h in hemocytes and at 24 h in the hepatopancreas. As the duration of the ammonia stress treatment extended to 72 h, the transcript levels of mMnSOD and cMnSOD significantly decreased both in hemocytes and hepatopancreas. These findings indicate that the SOD system is induced to respond to acute ammonia stress, and may be involved in environmental stress responses in E. carinicauda.
基金supported by the National Natural Science Foundation of China (31501588, 31972228, and 31970142)。
文摘Plants produce reactive oxygen species(ROS) to defend pathogens. To counteract this attack, certain pathogens express superoxide dismutases(SODs) to scavenge host-derived ROS. However, the roles of SODs in Verticillium dahliae, an important vascular pathogen, are not clear. Our previous study has shown that a putative extracellular SOD(VdSOD5) of V. dahliae is significantly induced by culturing in cotton tissues, suggesting that VdSOD5 may play an important role in host–pathogen interactions and virulence. Here, we showed that VdSOD5 encoded a superoxide dismutase with a cofactor copper-binding site and a functional signal peptide that can conduct protein secretion in an invertase-mutated yeast strain. The mutations in VdSOD5(ΔVdSOD5) did not change the normal vegetative growth and conidial production but reduced the virulence of V. dahliae on susceptible host cotton. Further studies showed that the transcription of Vd SOD5 was significantly up-regulated during the early stage of infection, and the loss-of-function of VdSOD5 decreased culture filtrate and fungal tissue SOD activities of V. dahliae by 74 and 28%, respectively. Compared to the wild-type strain Vd991, the ΔVdSOD5 showed the same sensitivity to the intracellular ROS generator menadione. Furthermore, nitroblue tetrazolium(NBT) staining demonstrated that VdSOD5 functioned in the detoxification of superoxides generated by host roots during infection. These results suggest that VdSOD5 of V. dahliae is an important virulence factor, secreted out of cells to combat host-derived ROS.
文摘A superoxide dismutase( SOD ) was purified to homogeneity from fresh camellia pollen by means of ammonium sulfate precipitation and column chromatography with DEAE-cellulose( DE52 ), Sephadex G-100 and phenyl sepharose^TM 6 Fast Flow columns. Its specific activity could reach to 4034 U/mg protein and it was determined to be Cu/ Zn-SOD according to its different sensitivities to different inhibitors. The molecular weight of the SOD and its subunit were 69500 and 34700, respectively, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE), which implicates that the SOD in camellia pollen is a dimmer composed of two identical subunits. The isoelectric point of the enzyme was determined to be 4. 1 by isoelectric focusing electrophoresis and the N-terminal amino acid was identified to be Gly by the DNS-Cl method. Its α-Helix was also calculated to be approximately 21.8% according to the circular dichroism(CD) spectra.
文摘Background: Oxidative stress plays a crucial role in the pathogenesis and progression of many diseases, including cardiovascular disease (CVD) and diabetes mellitus. Oxidative stress results from an imbalance between free radical formation and the protective antioxidant mechanisms. The latter mechanisms include superoxide dismutases (SODs) and glutathione peroxidases (GPx) that scavenge excessive ROS and protect cells against excess ROS production. The aim of current study was to determine the serum levels of SOD and serum GPx mRNA as well as the serum prooxidant-antioxidant balance in CVD patients. Method: A total of 103 subjects were recruited, with ≥50% stenosis (Angio+) or –). The expression levels of SOD and GPx in serum were measured using real time PCR. Biochemical-analyses (e.g., triglycerides;high-density lipo-protein cholesterol;low-density lipoprotein cholesterol;fasting-blood-glucose) were determined in all the subjects. Associations of SOD and GPx levels with biochemical and anthropometric characteristics were assessed together with evaluation of the serum pro-oxidant-antioxidant balance (PAB). Results: CVD subjects had a significantly higher level of fasting blood glucose (FBG), TC, LDL-C, TG and hs-CRP levels, as compared to control subjects. The level of serum PAB was significantly higher in the CVD group, 117.92 ± 35.51 and 110.65 ± 27.65 μg/dl in the angio– and angio+ groups, respectively compared to the control group (54.26 + 23.25). Additionally we observed that the SOD-3 level was higher in angio+ group versus control subjects. Conclusion: We have found that patients with CVD had a significantly higher prooxidant-antioxidant and SOD-3 levels. Further studies in larger multi-center setting are warranted to explore the value of emerging biomarker in CVD patients.
文摘There are growing evidences on the role of adaptive mechanisms of all cell types in pathological processes: atherosclerosis, ischemic attack, bacterial infections, etc. All kinds of these processes involve as main mechanism oxidative stress. Aerobic organisms use oxygen in processes that accidentally or deliberately generate aggressive species for the biologic components in the form of radicals. Radicals were looked initially as “harmful” molecules and this is true for large quantities but in small or even moderate amounts these molecules prove to have a physiological role. Reactive species are highly reactive and as a consequence are short living species. Their impact is supposed to be limited in the proximity area of their formation. Instead recent evidences indicate their implications in cellular signaling suggesting that individual chemical properties of reactive species make a difference in their biological role. This paper presents superoxide, nitric oxide and peroxide radical generation under cellular changing conditions, the adapting behavior of the enzymes that synthesize and remove them as well as some therapeutic target in superoxide related pathology.
文摘Superoxide dismutase (SOD)-deficient Escherichia coli OX326Acells are protected against chemically-induced oxidative stress by expression of the chaperonin GroESL. This protection is equivalent to expression of superoxide dismutase even though GroESL has no inherent SOD activity. Co-overexpression of GroESL and SOD in the same cells results in higher protein yields of SOD and greater metallation of SOD when compared with expression of SOD alone. Greater metallation results in the higher specific activity of SOD that is observed in heat shock, and is not due to increased synthesis of SOD mRNA or protein.