In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the alg...In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of...A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.展开更多
The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate th...The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.展开更多
Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with ...Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.展开更多
Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary ...Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.展开更多
To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is e...To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is explained with three aspects concretely including the principle error of rapid prototyping (RP) process, the inherent characteristics of FDM process, and some mi- cro-scratches on the surface of the extruded fiber. Based on the micro-characters of section shape of the FDM prototype, a physical model reflecting the outer shape characters is abstracted. With the physical simplified and deduced, the evaluating equations of surface roughness are acquired. According to the FDM sample parts with special design for experimental measurement, the real surface roughness values of different inclined planes are obtained. And the measuring values of surface roughness are compared with the calculation values. Furthermore, the causes of surface roughness deviation between measuring values and calculation values are respectively analyzed and studied. With the references of analytic conclusions, the measuring values of the experimental part surface are revised, and the revised values nearly accord with the calculation values. Based on the influencing principles of FDM process parameters and special post processing of FDM prototype parts, some concrete measures are proposed to reduce the surface roughness of FDM parts, and the applying effects are better.展开更多
In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent t...In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent the quality can be improved,a series of experiments with different LSMs,forcing datasets,and parameter datasets concerning soil texture and land cover were conducted.Six simulations are run for the Chinese mainland on 0.1°×0.1°grids from 1979 to 2008,and the simulated monthly soil moisture(SM),evapotranspiration(ET),and snow depth(SD)are then compared and assessed against observations.The results show that the meteorological forcing is the most important factor governing output.Beyond that,SM seems to be also very sensitive to soil texture information;SD is also very sensitive to snow parameterization scheme in the LSM.The Community Land Model version 4.5(CLM4.5),driven by newly developed observation-based regional meteorological forcing and land surface parameters(referred to as CMFD_CLM4.5_NEW),significantly improved the simulations in most cases over the Chinese mainland and its eight basins.It increased the correlation coefficient values from 0.46 to 0.54 for the SM modeling and from 0.54 to 0.67 for the SD simulations,and it decreased the root-mean-square error(RMSE)from 0.093 to 0.085 for the SM simulation and reduced the normalized RMSE from 1.277 to 0.201 for the SD simulations.This study indicates that the offline LSM simulation using a refined LSM driven by newly developed observation-based regional meteorological forcing and land surface parameters can better model reginal land surface hydrological processes.展开更多
We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to...We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.展开更多
High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the...High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.展开更多
The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fi...The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fine-grained soils like clay and silty soils,but the SWCC model for grinding soil-rock mixture(SRM)is less studied.Considering that the SRM is in a certain compaction state in the actual project,this study established a surface model with three variables of coupling compaction degree-substrate suction-moisture content based on the Cavalcante-Zornberg soil-water characteristic curve model.Then,the influence of each fitting parameter on the curve was analyzed.For the common SRM,the soil-water characteristic test was conducted.Moreover,the experimental measurements exhibit remarkable consistency with the mode surface.The analysis shows that the surface model intuitively describes the soil-water characteristics of grinding SRM,which can provide the SWCC of soils with bimodal pore characteristics under specific compaction degrees.Furthermore,it can reflect the influence of compaction degrees on the SWCC of rock-soil mass and has a certain prediction effect.The SWCC of SRM with various soil-rock ratios have a double-step shape.With the increase in compaction degree,the curves as a whole tend toward decreasing mass moisture content.The curve changes are mainly concentrated in the large pore section.展开更多
The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is model...The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.展开更多
Based on the accurate and efficient thermal injection method, we develop a fully analytical surface potential model for the heterojunction tunnel field-effect transistor(H-TFET). This model accounts for both the effec...Based on the accurate and efficient thermal injection method, we develop a fully analytical surface potential model for the heterojunction tunnel field-effect transistor(H-TFET). This model accounts for both the effects of source depletion and inversion charge, which are the key factors influencing the charge, capacitance and current in H-TFET. The accuracy of the model is validated against TCAD simulation and is greatly improved in comparison with the conventional model based on Maxwell–Boltzmann approximation. Furthermore, the dependences of the surface potential and electric field on biases are well predicted and thoroughly analyzed.展开更多
The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has ...The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.展开更多
Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and...Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and rainfall will result in different surface runoff generation mechanisms. For a large area (e.g., a model grid size of a regional climate model or a general circulation model), these runoff generation mechanisms are commonly present at different portions of a grid cell simultaneously. Missing one of the two major runoff generation mechanisms and failing to consider spatial soil variability can result in significant under/over estimation of surface runoff which can directly introduce large errors in soil moisture states over each model grid cell. Therefore, proper modeling of surface runoff is essential to a reasonable representation of feedbacks in a land-atmosphere system. This paper presents a new surface runoff parameterization with the Philip infiltration formulation that dynamically represents both the Horton and Dunne runoff generation mechanisms within a model grid cell. The parameterization takes into account the effects of soil heterogeneity on Horton and Dunne runoff. The new parameterization is implemented into the current version of the hydrologically based Variable Infiltration Capacity (VIC) land surface model and tested over one watershed in Pennsylvania, USA and over the Shiguanhe Basin in the Huaihe Watershed in China. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere-land coupling system, and has potential applications on large hydrological simulations and land-atmospheric interactions. It is further found that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation.展开更多
Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D g...Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.展开更多
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has b...Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has been derived. The results are compared with our previous work based on the film theory. The 2,4-dichlorophenol destruction rate by ozonation is predicted using the enhancement factor model in this paper.展开更多
The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrai...The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.展开更多
文摘In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
基金Supported by the National Natural Science Foundation of China (No.40471089) and the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping.
文摘A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.
基金Project supported by the Deutsche Forschungsgemeinschaft (DFG)as a part of the research group 366 (Simulation-Aided Offline ProcessDesign and Optimization in Manufacturing Sculptured Surfaces)
文摘The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.
基金Hundred Talent Program of Chinese Academy of Sciences under Grant No. 0300YQ000101. Partly supported by the National Natural Sci
文摘Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.
基金Project supported by the Fundamental Research Foundations for the Central Universities (Grant No.2009B30514)
文摘Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.
基金This project is supported by National Natural Science Foundation of China (No. 50575139)
文摘To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is explained with three aspects concretely including the principle error of rapid prototyping (RP) process, the inherent characteristics of FDM process, and some mi- cro-scratches on the surface of the extruded fiber. Based on the micro-characters of section shape of the FDM prototype, a physical model reflecting the outer shape characters is abstracted. With the physical simplified and deduced, the evaluating equations of surface roughness are acquired. According to the FDM sample parts with special design for experimental measurement, the real surface roughness values of different inclined planes are obtained. And the measuring values of surface roughness are compared with the calculation values. Furthermore, the causes of surface roughness deviation between measuring values and calculation values are respectively analyzed and studied. With the references of analytic conclusions, the measuring values of the experimental part surface are revised, and the revised values nearly accord with the calculation values. Based on the influencing principles of FDM process parameters and special post processing of FDM prototype parts, some concrete measures are proposed to reduce the surface roughness of FDM parts, and the applying effects are better.
基金supported by the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4074)the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0206)+2 种基金the Youth Innovation Promotion Association CAS (2021073)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab)the Huaihua University Double First-Class Initiative Applied Characteristic Discipline of Control Science and Engineering
文摘In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent the quality can be improved,a series of experiments with different LSMs,forcing datasets,and parameter datasets concerning soil texture and land cover were conducted.Six simulations are run for the Chinese mainland on 0.1°×0.1°grids from 1979 to 2008,and the simulated monthly soil moisture(SM),evapotranspiration(ET),and snow depth(SD)are then compared and assessed against observations.The results show that the meteorological forcing is the most important factor governing output.Beyond that,SM seems to be also very sensitive to soil texture information;SD is also very sensitive to snow parameterization scheme in the LSM.The Community Land Model version 4.5(CLM4.5),driven by newly developed observation-based regional meteorological forcing and land surface parameters(referred to as CMFD_CLM4.5_NEW),significantly improved the simulations in most cases over the Chinese mainland and its eight basins.It increased the correlation coefficient values from 0.46 to 0.54 for the SM modeling and from 0.54 to 0.67 for the SD simulations,and it decreased the root-mean-square error(RMSE)from 0.093 to 0.085 for the SM simulation and reduced the normalized RMSE from 1.277 to 0.201 for the SD simulations.This study indicates that the offline LSM simulation using a refined LSM driven by newly developed observation-based regional meteorological forcing and land surface parameters can better model reginal land surface hydrological processes.
基金Supported by National Natural Science Foundation of China(Nos.11472073,61173102 and 61370143)
文摘We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.
文摘High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.
基金funded by the Science and Technology Research Program of Chongqing Municipal Education Commission(grant number KJZD-K202100705)the Talents Program Supply System of Chongqing(grant number cstc2022ycjhbgzxm0080)。
文摘The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fine-grained soils like clay and silty soils,but the SWCC model for grinding soil-rock mixture(SRM)is less studied.Considering that the SRM is in a certain compaction state in the actual project,this study established a surface model with three variables of coupling compaction degree-substrate suction-moisture content based on the Cavalcante-Zornberg soil-water characteristic curve model.Then,the influence of each fitting parameter on the curve was analyzed.For the common SRM,the soil-water characteristic test was conducted.Moreover,the experimental measurements exhibit remarkable consistency with the mode surface.The analysis shows that the surface model intuitively describes the soil-water characteristics of grinding SRM,which can provide the SWCC of soils with bimodal pore characteristics under specific compaction degrees.Furthermore,it can reflect the influence of compaction degrees on the SWCC of rock-soil mass and has a certain prediction effect.The SWCC of SRM with various soil-rock ratios have a double-step shape.With the increase in compaction degree,the curves as a whole tend toward decreasing mass moisture content.The curve changes are mainly concentrated in the large pore section.
基金supported by National Natural Science Foundation of China(Nos.50725519,51271048,51321004)
文摘The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.
基金Project supported in part by the National Natural Science Foundation of China (Grant No. 62104192)in part by the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2021JQ-717)。
文摘Based on the accurate and efficient thermal injection method, we develop a fully analytical surface potential model for the heterojunction tunnel field-effect transistor(H-TFET). This model accounts for both the effects of source depletion and inversion charge, which are the key factors influencing the charge, capacitance and current in H-TFET. The accuracy of the model is validated against TCAD simulation and is greatly improved in comparison with the conventional model based on Maxwell–Boltzmann approximation. Furthermore, the dependences of the surface potential and electric field on biases are well predicted and thoroughly analyzed.
文摘The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.
基金The research reported herein was jointly supported by the National Natural Science Foundation of China under Grant Nos. 40145020, 40275023, 49794030, the National Key Program for Developing Basic Sciences under Grant Nos. G1998040905 and 2001CB309404,
文摘Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and rainfall will result in different surface runoff generation mechanisms. For a large area (e.g., a model grid size of a regional climate model or a general circulation model), these runoff generation mechanisms are commonly present at different portions of a grid cell simultaneously. Missing one of the two major runoff generation mechanisms and failing to consider spatial soil variability can result in significant under/over estimation of surface runoff which can directly introduce large errors in soil moisture states over each model grid cell. Therefore, proper modeling of surface runoff is essential to a reasonable representation of feedbacks in a land-atmosphere system. This paper presents a new surface runoff parameterization with the Philip infiltration formulation that dynamically represents both the Horton and Dunne runoff generation mechanisms within a model grid cell. The parameterization takes into account the effects of soil heterogeneity on Horton and Dunne runoff. The new parameterization is implemented into the current version of the hydrologically based Variable Infiltration Capacity (VIC) land surface model and tested over one watershed in Pennsylvania, USA and over the Shiguanhe Basin in the Huaihe Watershed in China. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere-land coupling system, and has potential applications on large hydrological simulations and land-atmospheric interactions. It is further found that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation.
文摘Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
基金Supported by the China Scholarship Council and Guangdong Provincial Natural Science Foundation of China(No.950215).
文摘Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has been derived. The results are compared with our previous work based on the film theory. The 2,4-dichlorophenol destruction rate by ozonation is predicted using the enhancement factor model in this paper.
基金Supported by the National Natural Science Foundation of China (No.40671158), the National 863 Program of China(No.2006AA12Z224) and the Program for New Century Excellent Talents in University (No.NCET-05-0626).
文摘The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.