Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise t...Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise the adverse effects of surface displacement, it is vital to monitor and accurately predict them and unravel their mechanisms. In recent years, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) have proven effective in predicting complex problems. However, CNN neglects the dynamic dependency of the input in the temporal dimension, which affects surface displacement features. The Convolutional-LSTM model can dynamically learn the temporal dependency among input features via the feedback connections in the LSTM to improve accurate captures of surface displacement features. This study focused on evaluating the C-LSTM model in predicting surface displacement of underground mines and assessed the predictive capabilities and generalisation strength of using hybridised ANN models. Geodetic and geotechnical data gathered from a Gold Mine in Ghana was used. The three models were tested on experimental data collected at Monitoring Scan Point 3. It was observed from the prediction output that all the methods could provide applicable and practical results. However, using indicators like root mean square error (RMSE) and correlation coefficient (R) in assessing the output of the prediction, the C-LSTM had the best prediction output. This study contributes to the advancement of accurate and efficient prediction of surface displacement of underground mines, ultimately enhancing and assisting safety operations.展开更多
Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contrac...Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum β determines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.展开更多
The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite s...The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.展开更多
A radial crack emanating from a semi-circular notch is of significant engineering importance. Accurate determination of key fracture mechanics parameters is essential for damage tolerance design and fatigue crack grow...A radial crack emanating from a semi-circular notch is of significant engineering importance. Accurate determination of key fracture mechanics parameters is essential for damage tolerance design and fatigue crack growth life predictions. The purpose of this paper is to provide an efficient and accurate closed-form weight function approach to the calculation of crack surface displacements for a radial crack emanating from a semi-circular notch in a semi-infinite plate. Results are presented for two load conditions: remote applied stress and uniform stress segment applied to crack surfaces. Based on a correction of stress intensity factor ratio, highly accurate analytical equations of crack surface displacements under the two load conditions are developed by fitting the data obtained with the weight function method. It is demonstrated that the Wu- Carlsson closed-form weight functions are very efficient, accurate and easy-to-use for calculating crack surface displacements for arbitrary load conditions. The method will facilitate fatigue crack closure and other fracture mechanics analyses where accurate crack surface displacements are required.展开更多
The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine...The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.展开更多
This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffract...This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffraction of waves. It is shown that the surface displacement amplitudes of the drained case are close to those of the undrained case, however, the surface displacement amplitudes of the dry case are very different from those of the saturated (either drained or undrained) cases. There are large phase shift between the dry case and the saturated cases, as well as slightly longer resultant wavelengths for the undrained case than those for the drained case and longer resultant wavelengths for the drained case than those for the dry case. For small porosity the surface displacement amplitudes for the saturated cases are almost identical to those for the dry case; while for large porosity, the effect of drainage condition becomes significant, and the surface displacement amplitudes for the undrained case are larger than those for the drained case. As the incident frequency increases, the effect of porosity becomes significant, and more significant for the undrained case than that for the drained case. As the porosity increases, the pore pressures increase significantly but their oscillations become smoother. As the incident frequency increases, the pore pressures become more complicated.展开更多
On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time - dependent numerical model for the water wave propagation has been established combined with diffe...On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time - dependent numerical model for the water wave propagation has been established combined with different boundary conditions. Through computing the effective surface displacement and transforming into the real transient wave motion, related wave factors will be calculated. Compared with Lin's model, analysis shows that calculation stability of the present model is enhanced efficiently, because the truncation errors of this model are only contributed by the dissipation terms, but those of Lin's model are induced by the convection terms, dissipation terms and source terms. The tests show that the present model succeeds the merit in Lin' s model and the computational program is simpler, the computational time is shorter, and the computational stability is enhanced efficiently. The present model has the capability of simulating transient wave motion by correctly predicting at the speed of wave propagation, which is important for the real - time forecast of the arrival time of surface waves generated in the deep sea. The model is validated against analytical solution for wave diffraction and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope. Good agreements are obtained. The model can be applied to the theory research an d engineering applications about the wave propagation in a biggish area.展开更多
This paper intends to develop finite element models that can simulate vehicle load moving on pavement system and reflect the pavement response of vehicle and pavement interaction.We conduct parametric analysis conside...This paper intends to develop finite element models that can simulate vehicle load moving on pavement system and reflect the pavement response of vehicle and pavement interaction.We conduct parametric analysis considering the influences of asphalt concrete layer modulus and thickness,base layer modulus and thickness,and subgrade modulus on pavement surface displacement,frequency,and strain response.The analysis findings are fruitful.Both the displacement basin width and maximum value of dynamic surface displacements are larger than those of static surface displacements.The frequency is positively correlated with the pavement structure moduli,and negatively correlated with the pavement structure thicknesses.The shape of dynamic and static tensile strain is similar along the depth of the pavement structure.The maximum value of dynamic tensile strain is larger than that of static tensile strain.The frequency of entire pavement structure holds more significant influence than the surface displacement and strain do.The subgrade modulus has a significant effect on surface displacement,frequency and strain.展开更多
Co-seismic line-of-sight displacements of the 2011 Mw9.0 Japan earthquake derived from InSAR data of Envisat ASAR, ALOS PALSAR and TerraSAR-X show a maximum value of about - 245cm to -221cm near the epicenter. This re...Co-seismic line-of-sight displacements of the 2011 Mw9.0 Japan earthquake derived from InSAR data of Envisat ASAR, ALOS PALSAR and TerraSAR-X show a maximum value of about - 245cm to -221cm near the epicenter. This result is in good agreement with the result of GPS measurement. The ob- served displacement pattern suggests an earthquake-rupture zone over 500km long, with a ground-motion pat- tern in the vicinity of the northern segment more complex than that of the southern segment, possibly due to immediate aftershocks that occurred between satellite passes.展开更多
Co-seismic ground-surface deformation of the Yushu earthquake on April 14, 2010 is studied on the basis of interferometry principle by using InSAR images from ALOS PALSAR and ENVISAT ASAR pairs. The observed maximum l...Co-seismic ground-surface deformation of the Yushu earthquake on April 14, 2010 is studied on the basis of interferometry principle by using InSAR images from ALOS PALSAR and ENVISAT ASAR pairs. The observed maximum line-of-sight displacement is 54 cm, which is equivalent to a sinistral strike slip of 180 cm on the surface. The location of macro-epicenter is very close to the epicenter determined by in situ investigation, suggesting that InSAR is an ideal tool for quick identification of the macro-epicenter, and thus for timely disaster assessment after a destructive earthquake.展开更多
The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the ma...The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the mainshock rupture characteristics,geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution.However,early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result.In this paper,we will focus on studying the Mw 6.3 aftershock,which is the only A/6+thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock.We will relocate the hypocenter of this event using the hypo 2000 method,make the finite fault model(FFM)inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study.Although we are not able to resolve the real ruptured fault of this event because of limited observation data,we infer that it is a west-ward dipping event of oblique slip mechanism,consistent with the subfault geometries of the Kaikoura mainshock.According to the inverted FFM,this event can generate 10-20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.展开更多
The authors developed a 3-D numerical injection model on parallel TOUGH2-FLAC3 D based on the site-specific stratigraphic information in Ordos Basin to simulate the Shenhua CO_2 geological storage( CGS)demonstration p...The authors developed a 3-D numerical injection model on parallel TOUGH2-FLAC3 D based on the site-specific stratigraphic information in Ordos Basin to simulate the Shenhua CO_2 geological storage( CGS)demonstration project injection process for three years and forecast CO_2 migration and layers displacement after injection for seven years. The results suggested that CO_2 migration did not stop after three years of consecutive injection,but migration rate was slowing down with time. As a result,displacement near injection well increased with injection and decreased slowly after injection. The maximum displacement of surface center occurred near the end of injection,which was only 1. 24 cm. According to the displacement result,it is safe to continue injecting for this project.展开更多
The stratospheric influences on the non-uniform variation in early spring(March–April,MA)surface temperature over Eurasia is investigated based on the ERA-Interim,NCEP-1,and NCEP-2 reanalysis data for the period198...The stratospheric influences on the non-uniform variation in early spring(March–April,MA)surface temperature over Eurasia is investigated based on the ERA-Interim,NCEP-1,and NCEP-2 reanalysis data for the period1980–2016.A lead–lag correlation is found between preceding winter(December–February,DJF)stratospheric polar vortex displacements(SPVD)and the MA west–east seesaw pattern in surface temperature over Eurasia.Further analysis reveals that the East Asian jet stream may act as a bridge linking DJF SPVD and MA surface temperature over Eurasia.A positive change in SPVD is associated with a decelerated polar jet stream and an accelerated East Asian jet stream in the troposphere in DJF.The East Asian jet stream signal can persist into MA.As a result,anomalous southerly/northerly winds prevail over western/eastern Eurasia,accounting for the west–east surface temperature seesaw over Eurasia.展开更多
Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- ...Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displace- ment equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry depen- dence.展开更多
文摘Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise the adverse effects of surface displacement, it is vital to monitor and accurately predict them and unravel their mechanisms. In recent years, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) have proven effective in predicting complex problems. However, CNN neglects the dynamic dependency of the input in the temporal dimension, which affects surface displacement features. The Convolutional-LSTM model can dynamically learn the temporal dependency among input features via the feedback connections in the LSTM to improve accurate captures of surface displacement features. This study focused on evaluating the C-LSTM model in predicting surface displacement of underground mines and assessed the predictive capabilities and generalisation strength of using hybridised ANN models. Geodetic and geotechnical data gathered from a Gold Mine in Ghana was used. The three models were tested on experimental data collected at Monitoring Scan Point 3. It was observed from the prediction output that all the methods could provide applicable and practical results. However, using indicators like root mean square error (RMSE) and correlation coefficient (R) in assessing the output of the prediction, the C-LSTM had the best prediction output. This study contributes to the advancement of accurate and efficient prediction of surface displacement of underground mines, ultimately enhancing and assisting safety operations.
基金Project(51478478) supported by the National Natural Science Foundation of ChinaProject(IRT1296) supported by the Program for Changjiang Scholars and Innovative Research Team(PCSIRT) in University,China
文摘Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum β determines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.
基金supported by the State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration(CEA) (no. LED2010A02,LED2008A06)
文摘The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.
基金Project supported by the National Natural Science Foundation of China(No.11402249)
文摘A radial crack emanating from a semi-circular notch is of significant engineering importance. Accurate determination of key fracture mechanics parameters is essential for damage tolerance design and fatigue crack growth life predictions. The purpose of this paper is to provide an efficient and accurate closed-form weight function approach to the calculation of crack surface displacements for a radial crack emanating from a semi-circular notch in a semi-infinite plate. Results are presented for two load conditions: remote applied stress and uniform stress segment applied to crack surfaces. Based on a correction of stress intensity factor ratio, highly accurate analytical equations of crack surface displacements under the two load conditions are developed by fitting the data obtained with the weight function method. It is demonstrated that the Wu- Carlsson closed-form weight functions are very efficient, accurate and easy-to-use for calculating crack surface displacements for arbitrary load conditions. The method will facilitate fatigue crack closure and other fracture mechanics analyses where accurate crack surface displacements are required.
基金funding from the National Natural Science Foundation of China(No.41572308)。
文摘The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.
基金support from the Program for New Century Excellent Talents in University (NCET-05-0248)the Key Program for Applied Basic Research of Tianjin Municipality (07JCZDJC10100)
文摘This paper investigates in detail the nature of diffraction of plane P waves around a canyon in poroelastic half-space, and studies the effects of incident frequency, drainage condition, porosity, etc, on the diffraction of waves. It is shown that the surface displacement amplitudes of the drained case are close to those of the undrained case, however, the surface displacement amplitudes of the dry case are very different from those of the saturated (either drained or undrained) cases. There are large phase shift between the dry case and the saturated cases, as well as slightly longer resultant wavelengths for the undrained case than those for the drained case and longer resultant wavelengths for the drained case than those for the dry case. For small porosity the surface displacement amplitudes for the saturated cases are almost identical to those for the dry case; while for large porosity, the effect of drainage condition becomes significant, and the surface displacement amplitudes for the undrained case are larger than those for the drained case. As the incident frequency increases, the effect of porosity becomes significant, and more significant for the undrained case than that for the drained case. As the porosity increases, the pore pressures increase significantly but their oscillations become smoother. As the incident frequency increases, the pore pressures become more complicated.
文摘On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time - dependent numerical model for the water wave propagation has been established combined with different boundary conditions. Through computing the effective surface displacement and transforming into the real transient wave motion, related wave factors will be calculated. Compared with Lin's model, analysis shows that calculation stability of the present model is enhanced efficiently, because the truncation errors of this model are only contributed by the dissipation terms, but those of Lin's model are induced by the convection terms, dissipation terms and source terms. The tests show that the present model succeeds the merit in Lin' s model and the computational program is simpler, the computational time is shorter, and the computational stability is enhanced efficiently. The present model has the capability of simulating transient wave motion by correctly predicting at the speed of wave propagation, which is important for the real - time forecast of the arrival time of surface waves generated in the deep sea. The model is validated against analytical solution for wave diffraction and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope. Good agreements are obtained. The model can be applied to the theory research an d engineering applications about the wave propagation in a biggish area.
基金supported by the National Natural Science Foundation of China(No.51178456)。
文摘This paper intends to develop finite element models that can simulate vehicle load moving on pavement system and reflect the pavement response of vehicle and pavement interaction.We conduct parametric analysis considering the influences of asphalt concrete layer modulus and thickness,base layer modulus and thickness,and subgrade modulus on pavement surface displacement,frequency,and strain response.The analysis findings are fruitful.Both the displacement basin width and maximum value of dynamic surface displacements are larger than those of static surface displacements.The frequency is positively correlated with the pavement structure moduli,and negatively correlated with the pavement structure thicknesses.The shape of dynamic and static tensile strain is similar along the depth of the pavement structure.The maximum value of dynamic tensile strain is larger than that of static tensile strain.The frequency of entire pavement structure holds more significant influence than the surface displacement and strain do.The subgrade modulus has a significant effect on surface displacement,frequency and strain.
基金supported by the National Natural Science Foundation of China(41004008)Key Foundation of Institute of Seismology,China Earthquake Administration (IS201026019)+2 种基金State Key Laboratory of Cryospheric Sciences,Cold and Arid Regions Environment and Engineering Research Institute,Chinese Academy Sciences(SKL CS09-03)the Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University (2009B54)the Director Foundation of Institute of Seismology,China Earthquake Administration(IS200826057)
文摘Co-seismic line-of-sight displacements of the 2011 Mw9.0 Japan earthquake derived from InSAR data of Envisat ASAR, ALOS PALSAR and TerraSAR-X show a maximum value of about - 245cm to -221cm near the epicenter. This result is in good agreement with the result of GPS measurement. The ob- served displacement pattern suggests an earthquake-rupture zone over 500km long, with a ground-motion pat- tern in the vicinity of the northern segment more complex than that of the southern segment, possibly due to immediate aftershocks that occurred between satellite passes.
基金supported by National Natural Science Foundation of China( 41004008) Key Foundation of Institute of Seismology China Earthquake Administration ( IS201026019) +3 种基金State Key Laboratory of Cryo-spheric Sciences,Cold and Arid Regions Environment and Engineering Research Institute,Chinese Academy of Sciences ( SKL CS09 - 03) the Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University( 2009B54) the Foundation of Institute of Seismology China Earthquake Administration( IS200826057 ) National Key Technology R&D Program of China( 2008BAC35B04 -5)
文摘Co-seismic ground-surface deformation of the Yushu earthquake on April 14, 2010 is studied on the basis of interferometry principle by using InSAR images from ALOS PALSAR and ENVISAT ASAR pairs. The observed maximum line-of-sight displacement is 54 cm, which is equivalent to a sinistral strike slip of 180 cm on the surface. The location of macro-epicenter is very close to the epicenter determined by in situ investigation, suggesting that InSAR is an ideal tool for quick identification of the macro-epicenter, and thus for timely disaster assessment after a destructive earthquake.
基金the New Zealand GeoNet (http://geonet.org. nz) projectfinancially supported by National Natural Science Foundation of China (Nos. 41590854 and 41461164003)
文摘The 2016 A/w7.8 Kaikoura(New Zealand)earthquake was the most complex event ever instrumentally recorded and geologically investigated,as it ruptured on more than 12 fault segments of various geometries.To study the mainshock rupture characteristics,geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution.However,early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result.In this paper,we will focus on studying the Mw 6.3 aftershock,which is the only A/6+thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock.We will relocate the hypocenter of this event using the hypo 2000 method,make the finite fault model(FFM)inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study.Although we are not able to resolve the real ruptured fault of this event because of limited observation data,we infer that it is a west-ward dipping event of oblique slip mechanism,consistent with the subfault geometries of the Kaikoura mainshock.According to the inverted FFM,this event can generate 10-20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.
基金Supported by projects of National Natural Science Foundation of China(Nos.41372239,41772238,41602243)
文摘The authors developed a 3-D numerical injection model on parallel TOUGH2-FLAC3 D based on the site-specific stratigraphic information in Ordos Basin to simulate the Shenhua CO_2 geological storage( CGS)demonstration project injection process for three years and forecast CO_2 migration and layers displacement after injection for seven years. The results suggested that CO_2 migration did not stop after three years of consecutive injection,but migration rate was slowing down with time. As a result,displacement near injection well increased with injection and decreased slowly after injection. The maximum displacement of surface center occurred near the end of injection,which was only 1. 24 cm. According to the displacement result,it is safe to continue injecting for this project.
基金Supported by the National Natural Science Foundation of China(41210007 and 41375083)
文摘The stratospheric influences on the non-uniform variation in early spring(March–April,MA)surface temperature over Eurasia is investigated based on the ERA-Interim,NCEP-1,and NCEP-2 reanalysis data for the period1980–2016.A lead–lag correlation is found between preceding winter(December–February,DJF)stratospheric polar vortex displacements(SPVD)and the MA west–east seesaw pattern in surface temperature over Eurasia.Further analysis reveals that the East Asian jet stream may act as a bridge linking DJF SPVD and MA surface temperature over Eurasia.A positive change in SPVD is associated with a decelerated polar jet stream and an accelerated East Asian jet stream in the troposphere in DJF.The East Asian jet stream signal can persist into MA.As a result,anomalous southerly/northerly winds prevail over western/eastern Eurasia,accounting for the west–east surface temperature seesaw over Eurasia.
文摘Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displace- ment equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry depen- dence.