The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challe...The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.展开更多
This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering, and then aged under circumstance for years. Samples were chara...This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering, and then aged under circumstance for years. Samples were characterized with several different techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and Raman, when they were fresh from sputter chamber and aged after years, respectively, in order to determine their structure and composition. It finds that a small amount of sodium occurred on the surface of vanadium dioxide films, which was probably due to sodium ion diffusion from soda-lime glass when sputtering was performed at high substrate temperature. It also finds that aging for years significantly affected the nonstoichiometry of vanadium dioxide films, thus inducing much change in Raman modes.展开更多
Epoxy resin-reinforced graphite composites have found extensive application as bipolar plates in fuel cells for stationary power supplies,valued for their lightweight nature and exceptional durability.To enhance the i...Epoxy resin-reinforced graphite composites have found extensive application as bipolar plates in fuel cells for stationary power supplies,valued for their lightweight nature and exceptional durability.To enhance the interfacial properties between graphite and epoxy resin(EP),surface oxidation of graphite was carried out using diverse functional groups.Experimental assessments illustrated that the composites with graphite oxide resulted in heightened mechanical strength and toughness compared to pristine graphite,which could be attributed to the excellent interface connection.Moreover,these composites displayed remarkable conductivity while simultaneously retaining their mechanical attributes.Furthermore,molecular dynamics simulations outcomes unveiled that the inclusion of oxygen-containing functional groups on the graphite surface augmented the interfacial energy with EP,and the interface morphology between graphite and resin exhibited heightened stability throughout the stretching process.This simple and effective technique presents opportunities for improving composites interfaces,enabling high load transfer efficiency,and opens up a potential path for developing strong and tough composite bipolar plates for fuel cells.展开更多
Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuu...Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuum hot pressing method, and their tribological properties were evaluated by sliding against a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy block. The influences of mass fraction of carbon fibers in CF/PEEK and the surface oxidation treatment of carbon fibers were explored. The results showed that the water contact angles on the surfaces of CF/PEEK specimens decreased, indicating that their surface wettability was improved. The hardness value of CF/PEEK was significantly improved, the friction coefficients of CF/PEEK were effectively reduced and its wear resistance was enhanced compared with unfilled PEEK. The leading effect on CF/PEEK tribological properties was the mass fraction of CF, followed by surface oxidation of CF, and the calf serum solution had better lubricity than that of saline and deionized water.展开更多
In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalc...In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalcopyrite surface properties and flotation performance were investigated by surface analysis techniques and floatation experiments, which implied the reason for the poor grade and recovery of oxidized chalcopyrite concentrate in the production process of the ore. Flotation results showed that when the concentration of H_(2)O_(2) increased from 0%(by weight) to 5%, the flotation recovery of chalcopyrite decreased sharply.However, with increasing H_(2)O_(2) concentration from 5% to 30%, chalcopyrite recovery improved relatively to different degrees with different collector concentrations. Analyses of X-ray photoelectron spectroscopy(XPS) and inductively coupled plasma-atomic optical emission spectrophotometry(ICP-OES) results indicated that the pretreatment with H_(2)O_(2) caused that hydrophilic substance formed on chalcopyrite surface with the dissolution of copper ions, and the dissolution amount of copper increased with the increase of H_(2)O_(2) concentration. UV–visible spectrophotometer and Fourier transform infrared spectrum(FTIR) studies indicated that the pretreatment of chalcopyrite with H_(2)O_(2) had little effect on the adsorption amount of potassium butyl xanthate(PBX) on chalcopyrite surface. However, due to the dissolution of copper ions, PBX interacted with chalcopyrite mainly as buthyl dixanthogen(BX)_(2).展开更多
Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and ox...Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.展开更多
Many transition metal sulfides and phosphides are susceptible to surface oxidation under ambient conditions.The formed surface oxidation layer,which is likely to further restructure under reaction conditions,alters th...Many transition metal sulfides and phosphides are susceptible to surface oxidation under ambient conditions.The formed surface oxidation layer,which is likely to further restructure under reaction conditions,alters the chemical properties of the pristine material but has not been well studied.In this work,we for the first time use X-ray photoelectron spectroscopy to quantify the natural surface oxidation of transition metal phosphide and sulfide nanoparticles and employ a simplified Deal-Grove model to analyze the kinetics.We show that CoS2 oxidizes faster than CoS whereas CoP_(2) is more difficult to oxidize compared to CoP,and there exists an inverse correlation between the surface oxidation rate and the Co-S/P distance in the pristine structure.More inclusive investigation unveils different types of surface oxidation behavior:CoS,NiS and FeS are limited by their reactivity with oxygen;CoS2 is the most reactive and its oxidation is governed by oxygen diffusion;CoP_(2) is influenced by both reactivity and diffusion;CoP,Ni_(2)P,Cu_(3)P and MoP exhibit high initial oxidation degrees and the kinetics are not well-defined;MoS2 is largely stable against oxidation.展开更多
Recently,the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties.Here,we present a systematic study on 1T′-MoTe2 ...Recently,the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties.Here,we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport,scanning tunnelling microscope(STM)measurements and band structure calculations.For a bulk sample,it exhibits large magneto-resistance(MR)and Shubnikov–de Hass oscillations inρxx and a series of Hall plateaus inρxy at low temperatures.Meanwhile,the MoTe2 thin films were intensively investigated with thickness dependence.For samples,without encapsulation,an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness.In such thin films,we also observed a suppression of the MR and weak anti-localization(WAL)effects.We attributed these effects to disorders originated from the extrinsic surface chemical reaction,which is consistent with the density functional theory(DFT)calculations and in-situ STM results.In contrast to samples without encapsulated protection,we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride(h-BN)film protection.Our results indicate that the metallic or superconducting behavior is its intrinsic state,and the insulating behavior is likely caused by surface oxidation in few layer 1T’-MoTe2 flakes.展开更多
Surface oxidation of polycrystalline nickel foil in air and pure water at different temperatures and the thermal stability of the surface oxides have been investigated by means of XPS.In ad- dition to NiO,Ni_2O_3 is f...Surface oxidation of polycrystalline nickel foil in air and pure water at different temperatures and the thermal stability of the surface oxides have been investigated by means of XPS.In ad- dition to NiO,Ni_2O_3 is formed especially after long periods of air exposure.Nickel surfaces are much less reactive to pure water than to air.The thermal stability of the surface oxides is related to oxidative temperature.The surface species of oxides formed by air exposure at temperatures below 120℃ can be reduced into nickel metal after heating the sample in vacuum at 300℃ for only 10 minutes (in the case of room temperature) to 1 h (in the case of 120℃). This reduction is caused by reaction with surface carbon contaminants.However,the surface species of nickel oxides formed by air exposure with heating at temperatures above 200℃ can not be reduced into metal after heating the sample in vacuum at 300℃ for 1h.展开更多
In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of...In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.展开更多
In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH t...In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.展开更多
The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy o...The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.展开更多
Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, a...Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, and favorable biocom- patibility. However, in some applications, com- ponents made of titanium or titanium alloys exhibit poor wear resistance under stationary or dynamic loading as well as contact corrosion manifested by the relatively negative standard electrode potential (-1.63 V ) . In order to improve the surface properties of titanium and its alloys, several techniques such as PVD ( physical vapor deposition ) /CVD (chemical vapor deposition ) coatings,展开更多
Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of...Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.展开更多
Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has be...Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has been studied for the first time using density functional theory(DFT).It is found that,unlike the oxidation of pyrite,the oxidation of marcasite merely occurs at surface S atoms.Under the coexistence of water and oxygen,S atoms around surface Fe atoms are replaced by O atoms.The surface S sites are initially oxidized to form S==O bonds,and continue to adsorb oxygen to gradually generate SO3^2-,SO4^2-species,and eventually FeSO4.In this process,H2O molecules participate in neither oxidation nor dissociation,and they are adsorbed on surface Fe sites in the form of molecules,i.e.,all O atoms in SO4^2-derive from oxygen rather than water molecules.展开更多
This paper discusses the hydrophobicity of the pyrite surface under different extents of oxidation. Experimental results demonstrate that pyrite is floatable only under initial oxidation of its surface, while the fres...This paper discusses the hydrophobicity of the pyrite surface under different extents of oxidation. Experimental results demonstrate that pyrite is floatable only under initial oxidation of its surface, while the fresh unoxidized or deeply oxidized surface of pyrite is hydrophilic. In the tests an organic reductant C6H3(OH)3 was chosen as the pyrite depressant. It is highly efficient ,and the sulfur in flotation can be significantly improved.展开更多
The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was pro...The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was proposed. By acidwashing, on the one hand, because the maximum Zeta potential of SiC powder increases to 72.49 mV with the decreasing content of metal oxide adsorbed on the SiC powder surface, the repulsion force between SiC powders that dispersed in slurry is enhanced, thus the SiC powder can be fully dispersed in slurry. On the other hand, after HF acidwashing, with the OH^- group adsorbed on SiC powder surface destroyed and replaced by the Fion, the hydrogen bond adsorbed on the OHgroup is also destroyed. Therefore, the surface property of the SiC powder is changed from hydrophilic to hydrophobic; H2O that adsorbed on SiC powder surface is released and can flow freely, and it actually increases the content of the effective flow phase in the slurry. These changes of SiC powder surface property can be proved by XPS and FTIR analysis. Finally, the viscosity of SiC slurry is decreased greatly, and when the viscosity of the slurry is lower than 1 Pa·s, the solid volume fraction of SiC powder in the slurry is maximized to 61.5 vol.%.展开更多
Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as ...Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as alternatives to Pt-based catalysts for the oxygen reduction reaction(ORR).In this study,commercial silicon carbide(SiC)was modified through surface oxidization(O-SiC)to support the use of Pd nanoparticles(Pd NPs)as electrocatalysts for ORR.The obtained Pd/O-SiC catalysts exhibited better ORR activity,stronger durability,and higher resistance to methanol poisoning than that exhibited by commercial Pt/C.The role of the support in enhancing the ORR performance,especially the oxidization of SiC surfaces,was discussed in detail based on the experimental characterizations and density functional theory calculations.The underlying mechanism of the superior ORR performance of Pd/O-SiC catalysts was attributed to the charge transfer from SiC_(x)O_(y)to Pd NPs on the surfaces of SiC and the strong metal–support interactions(SMSIs)between Pd and SiC_(x)O_(y).The charge transfer enhanced the ORR activity by inducing electron-rich Pd,increased the adsorption of the key intermediate OOH,and decreased the Gibbs free energy of the critical ORR step.Furthermore,SMSIs enhanced the ORR stability of the Pd/O-SiC catalyst.This study provided a facile route for designing and developing highly active Pd-based ORR electrocatalysts.展开更多
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe...The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.展开更多
Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-cont...Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.展开更多
基金the National Natural Science Foundation of China(Nos.52204298 and 52004335)the National Key R&D Program of China(Nos.2022YFC2904502 and 2022YFC2904501)+1 种基金the Major Science and Technology Projects in Yunnan Province(No.202202AB080012)the Science Research Initiation Fund of Central South University(No.202044019).
文摘The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.
基金supported by the National Natural Science Foundation of China (Grant No 60776039)China Agricultural University Foundation (Grant No 2007037)
文摘This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering, and then aged under circumstance for years. Samples were characterized with several different techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and Raman, when they were fresh from sputter chamber and aged after years, respectively, in order to determine their structure and composition. It finds that a small amount of sodium occurred on the surface of vanadium dioxide films, which was probably due to sodium ion diffusion from soda-lime glass when sputtering was performed at high substrate temperature. It also finds that aging for years significantly affected the nonstoichiometry of vanadium dioxide films, thus inducing much change in Raman modes.
基金the financial supports from the National Key R&D Program of China(No.2020YFB1505901)。
文摘Epoxy resin-reinforced graphite composites have found extensive application as bipolar plates in fuel cells for stationary power supplies,valued for their lightweight nature and exceptional durability.To enhance the interfacial properties between graphite and epoxy resin(EP),surface oxidation of graphite was carried out using diverse functional groups.Experimental assessments illustrated that the composites with graphite oxide resulted in heightened mechanical strength and toughness compared to pristine graphite,which could be attributed to the excellent interface connection.Moreover,these composites displayed remarkable conductivity while simultaneously retaining their mechanical attributes.Furthermore,molecular dynamics simulations outcomes unveiled that the inclusion of oxygen-containing functional groups on the graphite surface augmented the interfacial energy with EP,and the interface morphology between graphite and resin exhibited heightened stability throughout the stretching process.This simple and effective technique presents opportunities for improving composites interfaces,enabling high load transfer efficiency,and opens up a potential path for developing strong and tough composite bipolar plates for fuel cells.
基金The authors wish to express thanks to the financial support of National Natural Science Foundation of China (Nos. 51575278 and 51711530228), Science and Technology Project of Jiangsu Province (Nos. BY2016004-08 and BA2015054), the Funda- mental Research Funds for the Central Universities (No. 30910612203). A project funded by the Priority Aca- demic Program Development of Jiangsu Higher Educa- tion Institutions (PAPD). Finally, we also give thanks to the support from Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technologies.
文摘Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuum hot pressing method, and their tribological properties were evaluated by sliding against a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy block. The influences of mass fraction of carbon fibers in CF/PEEK and the surface oxidation treatment of carbon fibers were explored. The results showed that the water contact angles on the surfaces of CF/PEEK specimens decreased, indicating that their surface wettability was improved. The hardness value of CF/PEEK was significantly improved, the friction coefficients of CF/PEEK were effectively reduced and its wear resistance was enhanced compared with unfilled PEEK. The leading effect on CF/PEEK tribological properties was the mass fraction of CF, followed by surface oxidation of CF, and the calf serum solution had better lubricity than that of saline and deionized water.
基金the support of the National Natural Science Foundation of China (No. 52174268)the Independent Exploration and Innovation Project of Graduate Students of Central South University (No. 2021zzts0885)。
文摘In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalcopyrite surface properties and flotation performance were investigated by surface analysis techniques and floatation experiments, which implied the reason for the poor grade and recovery of oxidized chalcopyrite concentrate in the production process of the ore. Flotation results showed that when the concentration of H_(2)O_(2) increased from 0%(by weight) to 5%, the flotation recovery of chalcopyrite decreased sharply.However, with increasing H_(2)O_(2) concentration from 5% to 30%, chalcopyrite recovery improved relatively to different degrees with different collector concentrations. Analyses of X-ray photoelectron spectroscopy(XPS) and inductively coupled plasma-atomic optical emission spectrophotometry(ICP-OES) results indicated that the pretreatment with H_(2)O_(2) caused that hydrophilic substance formed on chalcopyrite surface with the dissolution of copper ions, and the dissolution amount of copper increased with the increase of H_(2)O_(2) concentration. UV–visible spectrophotometer and Fourier transform infrared spectrum(FTIR) studies indicated that the pretreatment of chalcopyrite with H_(2)O_(2) had little effect on the adsorption amount of potassium butyl xanthate(PBX) on chalcopyrite surface. However, due to the dissolution of copper ions, PBX interacted with chalcopyrite mainly as buthyl dixanthogen(BX)_(2).
基金supported by the National Natural Science Foundation of China (No. 21177130)the National Key Technology R&D Program (No. 2011BAC06B09)the Chinese Academy of Sciences Visiting Professorships for Senior International Scientists (No. 2009G2-28)
文摘Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.
基金This work is partially supported by the Sloan Research FellowshipL.H.and H.L.acknowledge graduate student exchange fellowships from the China Scholarship Council.
文摘Many transition metal sulfides and phosphides are susceptible to surface oxidation under ambient conditions.The formed surface oxidation layer,which is likely to further restructure under reaction conditions,alters the chemical properties of the pristine material but has not been well studied.In this work,we for the first time use X-ray photoelectron spectroscopy to quantify the natural surface oxidation of transition metal phosphide and sulfide nanoparticles and employ a simplified Deal-Grove model to analyze the kinetics.We show that CoS2 oxidizes faster than CoS whereas CoP_(2) is more difficult to oxidize compared to CoP,and there exists an inverse correlation between the surface oxidation rate and the Co-S/P distance in the pristine structure.More inclusive investigation unveils different types of surface oxidation behavior:CoS,NiS and FeS are limited by their reactivity with oxygen;CoS2 is the most reactive and its oxidation is governed by oxygen diffusion;CoP_(2) is influenced by both reactivity and diffusion;CoP,Ni_(2)P,Cu_(3)P and MoP exhibit high initial oxidation degrees and the kinetics are not well-defined;MoS2 is largely stable against oxidation.
基金The work was supported by the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2016ZT06D348)the National Natural Science Foundation of China(Grant No.11874193)the Shenzhen Fundamental Subject Research Program,China(Grant No.JCYJ20170817110751776).K.D.W.acknowledges support from the National Natural Science Foundation of China(Grant No.11574128).X.D.acknowledges support from NSF under award DMR-1808491.
文摘Recently,the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties.Here,we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport,scanning tunnelling microscope(STM)measurements and band structure calculations.For a bulk sample,it exhibits large magneto-resistance(MR)and Shubnikov–de Hass oscillations inρxx and a series of Hall plateaus inρxy at low temperatures.Meanwhile,the MoTe2 thin films were intensively investigated with thickness dependence.For samples,without encapsulation,an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness.In such thin films,we also observed a suppression of the MR and weak anti-localization(WAL)effects.We attributed these effects to disorders originated from the extrinsic surface chemical reaction,which is consistent with the density functional theory(DFT)calculations and in-situ STM results.In contrast to samples without encapsulated protection,we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride(h-BN)film protection.Our results indicate that the metallic or superconducting behavior is its intrinsic state,and the insulating behavior is likely caused by surface oxidation in few layer 1T’-MoTe2 flakes.
文摘Surface oxidation of polycrystalline nickel foil in air and pure water at different temperatures and the thermal stability of the surface oxides have been investigated by means of XPS.In ad- dition to NiO,Ni_2O_3 is formed especially after long periods of air exposure.Nickel surfaces are much less reactive to pure water than to air.The thermal stability of the surface oxides is related to oxidative temperature.The surface species of oxides formed by air exposure at temperatures below 120℃ can be reduced into nickel metal after heating the sample in vacuum at 300℃ for only 10 minutes (in the case of room temperature) to 1 h (in the case of 120℃). This reduction is caused by reaction with surface carbon contaminants.However,the surface species of nickel oxides formed by air exposure with heating at temperatures above 200℃ can not be reduced into metal after heating the sample in vacuum at 300℃ for 1h.
基金supported by Liaoning BaiQianWan Talents Program of China (No. 2008921028)Doctoral Fund of Ministry of Education of China (No. 200801451082)
文摘In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.
基金Funded by the National Natural Science Foundation of China(No.50974010)the Natural Science Foundation of Beijing City,China(No.2102039)
文摘In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.
基金Project supported by the High Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),ChinaProjects(51304054+1 种基金51364002)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of Guangxi Colleges and University Key Laboratory of Minerals Engineering in Guangxi University,China
文摘The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.
文摘Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, and favorable biocom- patibility. However, in some applications, com- ponents made of titanium or titanium alloys exhibit poor wear resistance under stationary or dynamic loading as well as contact corrosion manifested by the relatively negative standard electrode potential (-1.63 V ) . In order to improve the surface properties of titanium and its alloys, several techniques such as PVD ( physical vapor deposition ) /CVD (chemical vapor deposition ) coatings,
基金supported by the National Natural Science Foundation of China(21403004,21403003)~~
文摘Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.
基金financial support provided by the National Natural Science Foundation of China(NSFC)(51974094,51874106,and U20A20269).
文摘Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has been studied for the first time using density functional theory(DFT).It is found that,unlike the oxidation of pyrite,the oxidation of marcasite merely occurs at surface S atoms.Under the coexistence of water and oxygen,S atoms around surface Fe atoms are replaced by O atoms.The surface S sites are initially oxidized to form S==O bonds,and continue to adsorb oxygen to gradually generate SO3^2-,SO4^2-species,and eventually FeSO4.In this process,H2O molecules participate in neither oxidation nor dissociation,and they are adsorbed on surface Fe sites in the form of molecules,i.e.,all O atoms in SO4^2-derive from oxygen rather than water molecules.
文摘This paper discusses the hydrophobicity of the pyrite surface under different extents of oxidation. Experimental results demonstrate that pyrite is floatable only under initial oxidation of its surface, while the fresh unoxidized or deeply oxidized surface of pyrite is hydrophilic. In the tests an organic reductant C6H3(OH)3 was chosen as the pyrite depressant. It is highly efficient ,and the sulfur in flotation can be significantly improved.
基金This work was financially supported by the Doctoral Foundation of Xi'an Jiaotong University (No. DFXJTU2004-04).
文摘The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was proposed. By acidwashing, on the one hand, because the maximum Zeta potential of SiC powder increases to 72.49 mV with the decreasing content of metal oxide adsorbed on the SiC powder surface, the repulsion force between SiC powders that dispersed in slurry is enhanced, thus the SiC powder can be fully dispersed in slurry. On the other hand, after HF acidwashing, with the OH^- group adsorbed on SiC powder surface destroyed and replaced by the Fion, the hydrogen bond adsorbed on the OHgroup is also destroyed. Therefore, the surface property of the SiC powder is changed from hydrophilic to hydrophobic; H2O that adsorbed on SiC powder surface is released and can flow freely, and it actually increases the content of the effective flow phase in the slurry. These changes of SiC powder surface property can be proved by XPS and FTIR analysis. Finally, the viscosity of SiC slurry is decreased greatly, and when the viscosity of the slurry is lower than 1 Pa·s, the solid volume fraction of SiC powder in the slurry is maximized to 61.5 vol.%.
文摘Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as alternatives to Pt-based catalysts for the oxygen reduction reaction(ORR).In this study,commercial silicon carbide(SiC)was modified through surface oxidization(O-SiC)to support the use of Pd nanoparticles(Pd NPs)as electrocatalysts for ORR.The obtained Pd/O-SiC catalysts exhibited better ORR activity,stronger durability,and higher resistance to methanol poisoning than that exhibited by commercial Pt/C.The role of the support in enhancing the ORR performance,especially the oxidization of SiC surfaces,was discussed in detail based on the experimental characterizations and density functional theory calculations.The underlying mechanism of the superior ORR performance of Pd/O-SiC catalysts was attributed to the charge transfer from SiC_(x)O_(y)to Pd NPs on the surfaces of SiC and the strong metal–support interactions(SMSIs)between Pd and SiC_(x)O_(y).The charge transfer enhanced the ORR activity by inducing electron-rich Pd,increased the adsorption of the key intermediate OOH,and decreased the Gibbs free energy of the critical ORR step.Furthermore,SMSIs enhanced the ORR stability of the Pd/O-SiC catalyst.This study provided a facile route for designing and developing highly active Pd-based ORR electrocatalysts.
基金This work was financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through Project Nos.ON174004 and ON172019the PhD fellowship of Slađana Laketić.
文摘The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.
基金the financial support from the National Natural Science Foundation of China(No.51274256)
文摘Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4.