期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses 被引量:1
1
作者 Shota Kawabata Shi Bai +2 位作者 Kotaro Obata Godai Miyaji Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期212-220,共9页
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno... Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS. 展开更多
关键词 GHz burst laser-induced periodic surface structures(LIPSS) surface nanostructuring 2D nanostructures
下载PDF
Large-area straight,regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens 被引量:9
2
作者 Long Chen Kaiqiang Cao +5 位作者 Yanli Li Jukun Liu Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Advances》 SCIE EI 2021年第12期34-42,共9页
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos... Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos. 展开更多
关键词 laser-induced periodic surface structures two-beam interference structural coloring fused silica cylindrical lens
下载PDF
Preparation of Material Surface Structure Similarto Hydrophobic Structure of Lotus Leaf 被引量:1
3
作者 CAO Feng GUAN Zisheng LI Dongxu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期513-517,共5页
Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (P... Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (PS) moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology. And poly(dimethylsiloxane) (PDMS) replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds. Scanning electronic microscope (SEM) was employed to investigate the morphology and microstructures on moulds and replicas. Both the static and dynamic contact angles between water droplet and PDMS replicas' surface were also measured. As a result, similar microstructure can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures. 展开更多
关键词 HYDROPHOBIC BIONICS surface structure nano/micro replication
下载PDF
Generalized model for laser-induced surface structure in metallic glass 被引量:1
4
作者 叶林茂 武振伟 +2 位作者 刘凯欣 汤秀章 熊向明 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期557-562,共6页
The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are in... The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are. 展开更多
关键词 metallic glasses pulse laser processing micro-nano scale surface structure VISCOSITY
下载PDF
SURFACE STRUCTURE AND BULK PROPERTIES OF FLUORINATED POLY(ETHER URETHANE)S AND POLY(ETHER URETHANE) BLENDS
5
作者 傅强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第6期559-566,共8页
It has been well known that fluorinated polyurethanes exhibit uniquely low surface energy, biocompatibility and biostability, thermal and oxidative stability and nonsticking behavior. Consequently, these polymers have... It has been well known that fluorinated polyurethanes exhibit uniquely low surface energy, biocompatibility and biostability, thermal and oxidative stability and nonsticking behavior. Consequently, these polymers have attracted considerable interest. However, the mechanical properties of fluorinated polyurethanes usually decline with increasing fluorine contents. The blending of fluorinated polyurethanes with normal polyurethane was carried out to achieve balanced mechanical and surface properties. It was found that polyurethane with good mechanical properties and low surface energy can be obtained by adding a small amount of fluorinated polyurethane. The fluorinated side chains can easily migrate to uppermost surfaces of the blends untill the fluorine level at the surface becomes almost saturated. It has been shown from contact angle, XPS and AFM measurements that only as little as 0.34 wt% of fluorine level is enough to produce a surface saturated with fluorine, and the fluorine level at the uppermost surface is one hundred times higher than that in the blend bulk. The final outer surface structures of the polyurethane blend were independent of the content of the fluorinated polyurethane in the blends due to the surfaces saturated by fluorine. 展开更多
关键词 polyurethane fluorinated polyurethane BLEND surface structure bulk property surface dynamics
下载PDF
Surface Structure and Reconstructions of HgTe(111)Surfaces
6
作者 杨心怡 王观勇 +13 位作者 赵晨晓 朱朕 董璐 李爱民 吕洋洋 姚淑华 陈延彬 管丹丹 李耀义 郑浩 钱冬 刘灿华 陈宇林 贾金锋 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期71-74,共4页
Hg Te(111) surface is comprehensively studied by scanning tunneling microscopy/spectroscopy(STS).In addition to th√e prim√itive(1 × 1)√ hexagonal lattice,six reconstructed surface structures are observe... Hg Te(111) surface is comprehensively studied by scanning tunneling microscopy/spectroscopy(STS).In addition to th√e prim√itive(1 × 1)√ hexagonal lattice,six reconstructed surface structures are observed:(2 × 2),2 × 1,4 × 1,3 ×(1/2)3,2(1/2)2 × 2 and (1/2)11 × 2.The(2 × 2) reconstructed lattice maintains the primitive hexagonal symmetry,whi√le the lattices of the other five reconstructions are rectangular.Moreover,the topographic features of the3 ×(1/2)3 reconstruction are bias dependent,indicating that they have both topographic and electronic origins.The STSs obtained at different reconstructed surfaces show a universal dip feature with size ~100 mV,which may be attributed to the surface distortion.Our results reveal the atomic structure and complex reconstructions of the cleaved Hg Te(111) surfaces,which paves the way to understand the rich properties of Hg Te crystal. 展开更多
关键词 In STS HG surface structure and Reconstructions of HgTe surfaceS
下载PDF
Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si
7
作者 P.Satapathy A.Pfuch +1 位作者 R.Grunwald S.K.Das 《Journal of Semiconductors》 EI CAS CSCD 2020年第3期39-44,共6页
Laser induced periodic surface structures(LIPSS)represent a kind of top down approach to produce highly reproducible nano/microstructures without going for any sophisticated process of lithography.This method is much ... Laser induced periodic surface structures(LIPSS)represent a kind of top down approach to produce highly reproducible nano/microstructures without going for any sophisticated process of lithography.This method is much simpler and cost effective.In this work,LIPSS on Si surfaces were generated using femtosecond laser pulses of 800 nm wavelength.Photocatalytic substrates were prepared by depositing TiO2 thin films on top of the structured and unstructured Si wafer.The coatings were produced by sputtering from a Ti target in two different types of oxygen atmospheres.In first case,the oxygen pressure within the sputtering chamber was chosen to be high(3×10^–2 mbar)whereas it was one order of magnitude lower in second case(2.1×10^–3 mbar).In photocatalytic dye decomposition study of Methylene blue dye it was found that in the presence of LIPSS the activity can be enhanced by 2.1 and 3.3 times with high pressure and low pressure grown TiO2 thin films,respectively.The increase in photocatalytic activity is attributed to the enlargement of effective surface area.In comparative study,the dye decomposition rates of TiO2 thin films grown on LIPSS are found to be much higher than the value for standard reference thin film material Pilkington Activ^TM. 展开更多
关键词 laser induced periodic surface structures nanoripples silicon photocatalytic dye decomposition TiO2 thin film femtosecond laser pulses
下载PDF
Optimal Design of Surface Structure of a Magnetic Head
8
作者 WANG Yazhen NIU Rongjun HUANG Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期651-657,共7页
Currently, the surface structure of a magnetic head has been transferred from a positive to a negative model. In order to increase magnetic storage density and to decrease the flight height, the surface structure of a... Currently, the surface structure of a magnetic head has been transferred from a positive to a negative model. In order to increase magnetic storage density and to decrease the flight height, the surface structure of a head needs to be optimized continually. In the present paper, the influence of surface structure of a negative magnetic head on its flight attitude is analyzed in brief by both theoretical analysis and numerical simulation. Firstly, based on theoretical analysis, one-dimensional model of optimal design is built whose results play an important role in guiding for the two-dimensional model. Secondly, to analyze the impacts of different slructures of negative pressure heads, the original head structure is divided into five zones; the impacts of different zones on both pressure distribution and load carrying capacity were detailed analyzed by numerical analysis. Thirdly, remain the leading-head structure of the negative head, and optimized tail-end structure can be gained by the regional planning strategy to control the gas film pressure distribution. With layout strategy, three kinds of structures of the head were designed. The results show that the tail-end structure impacts on the flight performances significantly and the middle boss plays a major role on positive pressure, while the bilateral bosses lying in either side play assistant regulating role. The structures of bilateral bosses have slightly impact on pressure distribution. The results also show that an optimum tail structure can meet the needs of a lower flight height and a larger magnetic storage density. 展开更多
关键词 surface structure optimum design numerical analysis
下载PDF
Surface Structure and High-frequency Magnetic Properties of the Amorphous [Co_(0.94-x)Fe_(0.06)(MoMn)_x]_(77)(SiB)_(23) Alloys
9
作者 Lijun CHEN Yuzhi LIU Gingzhen XU Haisheng SHI Shanghai Iron and Steel Research Institute,Shanghai,200940,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第1期20-24,共5页
The relationship between the high-frequency magnetic properties and surface structure of the amorphous [Co_(0.94-x)Fe_(0.06)(MnMo)_x]_(77)(SiB)_(23) alloys annealed at 400-500℃ then control-cooled was investigated us... The relationship between the high-frequency magnetic properties and surface structure of the amorphous [Co_(0.94-x)Fe_(0.06)(MnMo)_x]_(77)(SiB)_(23) alloys annealed at 400-500℃ then control-cooled was investigated using XRD,TEM and XPS techniques.The results have shown that the high-frequency losses of the present alloys ob- viously reduced after suitable treatment.A crystalline layer with ultrafine grains of γ-Co formed on the surface of the amorphous ribbons.The size of the grains is 10-20 nm.The thickness of the layer is less than 0.1 μm.The sur- face of the crystalline layer is covered with an extremely thin oxide film which is very uniform and dense with thickness of less than 30 nm,the size of grains of the oxide is less than 10 nm.These ultrafine grains and the dense oxide film effectively refine the magnetic domains and increase the resistance of the layers of the magnetic core,consequently the losses at high frequency are fairly reduced. 展开更多
关键词 magnetic property amorphous alloy surface structure
下载PDF
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization
10
作者 Chaudry Sajed Saraj Subhash C.Singh +3 位作者 Gopal Verma Rahul A Rajan Wei Li Chunlei Guo 《Opto-Electronic Advances》 SCIE EI CAS 2022年第11期29-44,共16页
Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels.These reactions,however,suffer from sluggish kinetics due to a low local concentration of radicals a... Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels.These reactions,however,suffer from sluggish kinetics due to a low local concentration of radicals around the electrocatalyst.A large applied electrode potential can enhance the fuel generation efficiency via enhancing the radical concentration around the electrocatalyst sites,but this comes at the cost of electricity.Here,we report about a~45%saving in energy to achieve an electrochemical hydrogen generation rate of 3×10^(16) molecules cm^(–2)s^(–1)(current density:10 mA/cm^(2))through localized electric field-induced enhancement in the reagent concentration(LEFIRC)at laser-induced periodic surface structured(LIPSS)electrodes.The finite element model is used to simulate the spatial distribution of the electric field to understand the effects of LIPSS geometric parameters in field localization.When the LIPSS patterned electrodes are used as substrates to support Pt/C and RuO_(2) electrocatalysts,the η_(10) overpotentials for HER and OER are decreased by 40.4 and 25%,respectively.Moreover,the capability of the LIPSS-patterned electrodes to operate at significantly reduced energy is also demonstrated in a range of electrolytes,including alkaline,acidic,neutral,and seawater.Importantly,when two LIPSS patterned electrodes were assembled as the anode and cathode into a cell,it requires 330 mVs of lower electric potential with enhanced stability over a similar cell made of pristine electrodes to drive a current density of 10 mA/cm^(2).This work demonstrates a physical and versatile approach of electrode surface patterning to boost electrocatalytic fuel generation performance and can be applied to any metal and semiconductor catalysts for a range of electrochemical reactions. 展开更多
关键词 electric field localization hotspot formation laser-induced periodic surface structures electrochemical fuel generation overall water splitting
下载PDF
Femtosecond laser-induced periodic surface structures on hard and brittle materials
11
作者 ZHAO GuoXu WANG Gong +6 位作者 LI YunFei WANG Lei LIAN YuDong YU Yu ZHAO Hui WANG YuLei LU ZhiWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期19-36,共18页
Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate... Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate materials,and quantum information,especially under harsh conditions,such as high temperatures and high pressures.Femtosecond laser direct writing technology has greatly promoted the development of femtosecond laser-induced periodic surface structure(Fs-LIPSS or LIPSS by a femtosecond laser)applications of hard and brittle materials due to its high precision,controllability,and three-dimensional processing ability.Thus far,LIPSSs have been widely used in material surface treatment,optoelectronic devices,and micromechanics.However,a consensus has not been reached regarding the formation mechanism of LIPSSs on hard and brittle materials.In this paper,three widely accepted LIPSS formation mechanisms are introduced,and the characteristics and applications of LIPSSs on diamonds,silicon,silicon carbide,and fused silica surfaces in recent years are summarized.In addition,the application prospects and challenges of LIPSSs on hard and brittle materials by a femtosecond laser are discussed. 展开更多
关键词 laser-induced periodic surface structures hard and brittle materials femtosecond laser
原文传递
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
12
作者 Ruozhong Han Yuchan Zhang +6 位作者 Qilin Jiang Long Chen Kaiqiang Cao Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Science》 2024年第3期33-46,共14页
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t... Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL. 展开更多
关键词 laser-induced periodic surface structures(LIPSS) local field enhancement collinear pump-probe imaging silicon high spatial frequency periodic structures
下载PDF
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
13
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels surface electronic structure ORR ELECTROCATALYST Organic ligands
下载PDF
Formation of Laser-Induced Periodic Surface Structures on Reaction-Bonded Silicon Carbide by Femtosecond Pulsed Laser Irradiation 被引量:3
14
作者 Tushar Meshram Jiwang Yan 《Nanomanufacturing and Metrology》 EI 2023年第1期36-48,共13页
Reaction-bonded silicon carbide(RB-SiC)is an excellent engineering material with high hardness,stiffness,and resistance to chemical wear.However,its widespread use is hindered due to the properties mentioned above,mak... Reaction-bonded silicon carbide(RB-SiC)is an excellent engineering material with high hardness,stiffness,and resistance to chemical wear.However,its widespread use is hindered due to the properties mentioned above,making it difficult to machine functional surface structures through mechanical and chemical methods.This study investigated the fundamental characteristics of laser-induced periodic surface structures(LIPSSs)on RB-SiC via femtosecond pulsed laser irradiation at a wavelength of 1028 nm.Low-spatial-frequency LIPSS(LSFL)and high-spatial-frequency LIPSS(HSFL)formed on the surface along directions perpendicular to the laser polarization.SiC grains surrounded by a large amount of Si show a reduced threshold for LIPSS formation.By varying laser fluence and scanning speed,HSFL-LSFL hybrid structures were generated on the SiC grains.Transmission electron microscopy observations and Raman spectroscopy were carried out to understand the formation mechanism of the hybrid LIPSS.A possible mechanism based on the generation of multiple surface electromagnetic waves due to the nonlinear response of SiC was proposed to explain the hybrid structure formation.Furthermore,the direction of laser scanning with respect to laser polarization affects the uniformity of the generated LIPSS. 展开更多
关键词 Reaction-bonded silicon carbide surface texturing Laser-induced periodic surface structure Composite material Hybrid nanostructure
原文传递
Hydrothermal Desulfurization on Porous Sulfonated CFR-PEEK Surface Structure Used for Implant Application 被引量:1
15
作者 Jingdan Li Wen Qin +2 位作者 Patrick Osei Lartey Yulong Fu Jing Ma 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期748-761,共14页
The poor wear resistance and bio-inertness surface of polyetheretherketone(PEEK)limits the implant applications of PEEK and its composites.Carbon fiber(CFR)was used to boost the wear resistance of PEEK;however,the bio... The poor wear resistance and bio-inertness surface of polyetheretherketone(PEEK)limits the implant applications of PEEK and its composites.Carbon fiber(CFR)was used to boost the wear resistance of PEEK;however,the bioactivity of carbon fiber-reinforced polyetheretherketone(CFR-PEEK)composites is even worse.The bioactivity of CFR-PEEK can be enhanced by constructing 3D porous structure.Nevertheless,large number of sulfur component introduced by sulfonation shows cytotoxicity and can cause damage to human cells.Besides,the sulfur component affects the cytotoxicity and bioactivity of sulfonated CFR-PEEK(SCFR-PEEK).Hydrothermal treatment can sweep away the sulfur component in the 3D porous structure of SCFR-PEEK.Meanwhile,the changes in crystallinity and hardness after hydrothermal treatment may also affect the wear resistance.Therefore,the effect of hydrothermal temperature on wear resistance,cytotoxicity and bioactivity of SCFR-PEEK were studied.In this work,the samples with hydrothermal temperature 90–120℃exhibited high wear resistance.The 3D pore structure of SCFR-PEEK unchanged after hydrothermal treatment,and the sulfur component in the 3D pore structure gradually decreased with increasing hydrothermal temperature by SEM images and EDS analysis.In addition,SCFR-PEEK treated in 90–120℃.Exhibited low cytotoxicity and high bioactivity,which is beneficial for the implant materials. 展开更多
关键词 BIOMATERIALS Hydrothermal treatment CYTOTOXICITY Microstructure surface structure
原文传递
Heat accumulation effects in femtosecond laser-induced subwavelength periodic surface structures on silicon
16
作者 付强 钱静 +1 位作者 王关德 赵全忠 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第5期47-51,共5页
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for femtosecond laser-induced subwavelength periodic surface structures on silicon.Femtosecond laser micromach... High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for femtosecond laser-induced subwavelength periodic surface structures on silicon.Femtosecond laser micromachining is no longer a nonthermal process,as long as the repetition rate reaches up to 100 kHz due to heat accumulation.Moreover,a higher repetition rate generates much better defined ripple structures on the silicon surface,based on the fact that accumulated heat raises lattice temperature to the melting point of silicon(1687 K),with more intense surface plasmons excited simultaneously.Comparison of the surface morphology on repetition rate and on the overlapping rate confirms that repetition rate and pulse overlapping rate are two competing factors that are responsible for the period of ripple structures.Ripple period drifts longer because of a higher repetition rate due to increasing electron density;however,the period of laser structured surface is significantly reduced with the pulse overlapping rate.The Maxwell–Garnett effect is confirmed to account for the ripple period-decreasing trend with the pulse overlapping rate. 展开更多
关键词 laser materials processing femtosecond laser subwavelength periodic surface structures
原文传递
Nanosecond laser-induced controllable periodical surface structures on silicon 被引量:4
17
作者 陈磊 刘泽琳 +6 位作者 郭川 余同成 陈敏孙 许中杰 刘昊 赵国民 韩凯 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第1期186-191,共6页
In this paper,an effective method is proposed to generate specific periodical surface structures.A 532 nm linearly polarized laser is used to irradiate the silicon with pulse duration of 10 ns and repetition frequency... In this paper,an effective method is proposed to generate specific periodical surface structures.A 532 nm linearly polarized laser is used to irradiate the silicon with pulse duration of 10 ns and repetition frequency of 10 Hz.Laser-induced periodic surface structures(LIPSSs) are observed when the fluence is 121 mJ/cm;and the number of pulses is 1000.The threshold of fluence for generating LIPSS gradually increases with the decrease of the number of pulses.In addition,the laser incident angle has a notable effect on the period of LIPSS,which varies from 430 nm to 1578 nm,as the incident angle ranges from10° to 60° correspondingly.Besides,the reflectivity is reduced significantly on silicon with LIPSS. 展开更多
关键词 laser-induced periodic surface structure NANOstructureS FLUENCE number of pulses incident angle
原文传递
Plowing-Extrusion Processes and Performance of Functional Surface Structures of Copper Current Collectors for Lithium-Ion Batteries 被引量:2
18
作者 Chun Wang Wei Yuan +8 位作者 Yu Chen Bote Zhao Yong Tang Shiwei Zhang Xinrui Ding Jun He Songmao Chen Baoyou Pan Mingyue Chen 《Nanomanufacturing and Metrology》 EI 2022年第4期336-353,共18页
Most copper current collectors for commercial lithium-ion batteries(LIBs)are smooth copper foils,which cannot form a stable and effective combination with electrode slurry.They are likely to deform or fall off after l... Most copper current collectors for commercial lithium-ion batteries(LIBs)are smooth copper foils,which cannot form a stable and effective combination with electrode slurry.They are likely to deform or fall off after long-term operation,resulting in a sharp decline in battery performance.What is worse is that this condition inevitably causes internal short circuits and thus brings about security risks.In this study,a process route of fabricating the functional surface structures on the surface of a copper collector for LIBs by twice-crisscross micro-plowing(TCMP)is proposed,which provides a new idea and an efficient method to solve the above problems from the perspective of manufacturing.The finite element simulation of TCMP combined with the cutting force test and morphological characterization is conducted to verify the forming mechanism of the surface structures on a copper sheet and its relationship with the processing parameters.The influence of several key processing parameters on the surface characteristics of the copper sheet is comprehensively explored.A series of functions is tested to obtain the optimal parameters for performance improvement of the current collector.Results show that the structured copper sheet with the cutting distance of 250μm,cutting depth of 80μm,and cutting crossing angle of 90°enables the best surface features of the current collector;the contact angle reaches 0°,the slurry retention rate is up to 89.2%,and the friction coefficient reaches 0.074.The battery using the as-prepared structured copper sheet as the current collector produces a specific capacity of 318.6 mAh/g after 50 cycles at a current density of 0.2 C,which is 132.7%higher than the one based on a smooth surface.The capacity reversibility of the sample with the new current collector is much better than that of the traditional samples,yielding a lower impedance. 展开更多
关键词 Plowing-extrusion Current collector Lithium-ion batteries Functional surface structures Contact angle Specific capacity
原文传递
Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings 被引量:1
19
作者 周侃 贾鑫 +5 位作者 郗慧霞 刘聚坤 冯东海 张诗按 孙真荣 贾天卿 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第2期63-67,共5页
This Letter reports the formation of periodic surface structures on Ni–Fe film irradiated by a single femtosecond laser pulse. A concave lens with a focus length of-150 mm is placed in front of an objective(100×... This Letter reports the formation of periodic surface structures on Ni–Fe film irradiated by a single femtosecond laser pulse. A concave lens with a focus length of-150 mm is placed in front of an objective(100×, NA=0.9),which transforms the Gaussian laser field into a ring distribution by the Fresnel diffraction. Periodic ripples form on the ablation area after the irradiation of a single femtosecond laser pulse, which depends on the laser polarization and laser fluence. We propose that the ring structure of the laser field leads to a similar transient distribution of the permittivity on the sample surface, which further launches the surface plasmon polaritons. The interaction of the incident laser with surface plasmon polaritons dominates the formation of periodic surface structures. 展开更多
关键词 DIFFRACTION Electromagnetic wave polarization Iron Laser ablation Laser optics Laser pulses Metallic films Nickel Particle optics Periodic structures PHONONS PHOTONS PLASMONS Quantum theory surface plasmon resonance surface structure Ultrafast lasers
原文传递
Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser 被引量:1
20
作者 孟凡通 胡洁 +2 位作者 韩伟娜 刘鹏军 王青松 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第6期78-82,共5页
An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of aickel is revealed by changing the scanning speed ... An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of aickel is revealed by changing the scanning speed and the laser fluence. The experimental results show the proportion of HSFL area in the overall LIPSS (i.e., K) presents a quasi-parabola function trend with the polarization orientation under a femtoseeond (fs) laser single-pulse train. Moreover, an obvious fluctuation dependence of Kon the pulse delay is observed under a fs laser dual-pulse train. The peak value of the fluctuation is found to be determined by the polarization orientation of the dual-pulse train. 展开更多
关键词 Laser pulses NICKEL POLARIZATION surface structure Ultrafast lasers
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部