From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of t...From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.展开更多
A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The conv...A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The convergence properties of these methods are discussed in depth, and the best possible choices of the parameters involved in the new methods are investigated in detail. Numerical computations show that the new methods are more efficient and robust than both classical relaxation methods and classical conjugate direction methods.展开更多
We study the symmetric positive semidefinite solution of the matrix equation AX_1A^T + BX_2B^T=C. where A is a given real m×n matrix. B is a given real m×p matrix, and C is a given real m×m matrix, with...We study the symmetric positive semidefinite solution of the matrix equation AX_1A^T + BX_2B^T=C. where A is a given real m×n matrix. B is a given real m×p matrix, and C is a given real m×m matrix, with m, n, p positive integers: and the bisymmetric positive semidefinite solution of the matrix equation D^T XD=C, where D is a given real n×m matrix. C is a given real m×m matrix, with m. n positive integers. By making use of the generalized singular value decomposition, we derive general analytic formulae, and present necessary and sufficient conditions for guaranteeing the existence of these solutions.展开更多
Least squares solution of F=PG with respect to positive semidefinite symmetric P is considered,a new necessary and sufficient condition for solvablity is given,and the expression of solution is derived in the some spe...Least squares solution of F=PG with respect to positive semidefinite symmetric P is considered,a new necessary and sufficient condition for solvablity is given,and the expression of solution is derived in the some special cases. Based on the expression, the least spuares solution of an inverse eigenvalue problem for positive semidefinite symmetric matrices is also given.展开更多
Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic ...Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic boundary value problem; Discussion on symmetric positive definite matrix; Computational complexities.展开更多
文摘From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.
基金Subsidized by The Special Funds For Major State Basic Research Projects G1999032803.
文摘A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The convergence properties of these methods are discussed in depth, and the best possible choices of the parameters involved in the new methods are investigated in detail. Numerical computations show that the new methods are more efficient and robust than both classical relaxation methods and classical conjugate direction methods.
基金Subsidized by the Special Funds for Major State Basic Research Projects G1999032803
文摘We study the symmetric positive semidefinite solution of the matrix equation AX_1A^T + BX_2B^T=C. where A is a given real m×n matrix. B is a given real m×p matrix, and C is a given real m×m matrix, with m, n, p positive integers: and the bisymmetric positive semidefinite solution of the matrix equation D^T XD=C, where D is a given real n×m matrix. C is a given real m×m matrix, with m. n positive integers. By making use of the generalized singular value decomposition, we derive general analytic formulae, and present necessary and sufficient conditions for guaranteeing the existence of these solutions.
文摘Least squares solution of F=PG with respect to positive semidefinite symmetric P is considered,a new necessary and sufficient condition for solvablity is given,and the expression of solution is derived in the some special cases. Based on the expression, the least spuares solution of an inverse eigenvalue problem for positive semidefinite symmetric matrices is also given.
基金Subsidized by the Special Funds for Major State Basic Research Projects G1999032803 and Suported bythe National Natural Scienc
文摘Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic boundary value problem; Discussion on symmetric positive definite matrix; Computational complexities.