The competition among modem enterprises has been converted from products to capability. As the basis of competition, production system can't win the market unless it takes advantage of its capability in competition. ...The competition among modem enterprises has been converted from products to capability. As the basis of competition, production system can't win the market unless it takes advantage of its capability in competition. Here in this article, the evolutionary rules of production system contributing to the establishment, renovation, reform, invention and promotion of the production of modem enterprises are observed.展开更多
As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major ca...As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major categories such as collaborative recommendation system and content based recommendation system. In case of collaborative recommendation systems, these try to seek out users who share same tastes that of given user as well as recommends the websites according to the liking given user. Whereas the content based recommendation systems tries to recommend web sites similar to those web sites the user has liked. In the recent research we found that the efficient technique based on association rule mining algorithm is proposed in order to solve the problem of web page recommendation. Major problem of the same is that the web pages are given equal importance. Here the importance of pages changes according to the frequency of visiting the web page as well as amount of time user spends on that page. Also recommendation of newly added web pages or the pages that are not yet visited by users is not included in the recommendation set. To overcome this problem, we have used the web usage log in the adaptive association rule based web mining where the association rules were applied to personalization. This algorithm was purely based on the Apriori data mining algorithm in order to generate the association rules. However this method also suffers from some unavoidable drawbacks. In this paper we are presenting and investigating the new approach based on weighted Association Rule Mining Algorithm and text mining. This is improved algorithm which adds semantic knowledge to the results, has more efficiency and hence gives better quality and performances as compared to existing approaches.展开更多
As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safe...As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.展开更多
In new environments of trading, customer's trust is vital for the extended progress and development of electronic commerce. This paper proposes that in addition to known factors of electronic commerce B2C websites...In new environments of trading, customer's trust is vital for the extended progress and development of electronic commerce. This paper proposes that in addition to known factors of electronic commerce B2C websites such a design of websites, security of websites and familiarity of website influence customers trust in online transactions. This paper presents an application of expert system on trust in electronic commerce. Based on experts’ judgment, a frame of work was proposed. The proposed model applies ANFIS and Mamdani inference fuzzy system to get the desired results and then results of two methods were compared. Two questionnaires were used in this study. The first questionnaire was developed for e-commerce experts, and the second one was designed for the customers of electronic websites. Based on AHP method, Expert Choice software was used to determine the priority of factors in the first questionnaire, and MATLAB and Excel were used for developing the fuzzy rules. Finally, the fuzzy logical kit was used to analyze the generated factors in the model. Our study findings show that trust in EC transactions is strongly mediated by perceived security.展开更多
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a...Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.展开更多
Production systems have a special value since they are used in state-space searching algorithms and expert systems in addition to their use as a model for problem solving in artificial intelligence. Therefore, it is o...Production systems have a special value since they are used in state-space searching algorithms and expert systems in addition to their use as a model for problem solving in artificial intelligence. Therefore, it is of high importance to consider different techniques to improve their performance. In this research, rule base is the component of the production system that we aim to focus on. This work therefore seeks to investigate this component and its relationship with other components and demonstrate how the improvement of its quality has a great impact on the performance of the production system as a whole. In this paper, the improvement of rule base quality is accomplished in two steps. The first step involves re-writing the rules having conjunctions of literals and producing a new set of equivalent rules in which long inference chains can be obtained easily. The second step involves augmenting the rule base with inference short-cut rules devised from the long inference chains. These inference short-cut rules have a great impact on the performance of the production system. Finally, simulations are performed on randomly generated rule bases with different sizes and goals to be proved. The simulations demonstrate that the suggested enhancements are very beneficial in improving the performance of production systems.展开更多
In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantag...In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantages of our system are threefold. First, it aims at proposing a strong and unified rule form based on first order structure that permits the representation and management of all the types of rules and their quality via some characteristics. Second, it leads to increase the quality of rules which conditions the quality of data cleaning. Third, it uses an appropriate knowledge acquisition process, which is the weakest task in the current rule and knowledge based systems. As several research works have shown that data cleaning is rather driven by domain knowledge than by data, we have identified and analyzed the properties that distinguish knowledge and rules from data for better determining the most components of the proposed system. In order to illustrate our system, we also present a first experiment with a case study at health sector where we demonstrate how the system is useful for the improvement of data quality. The autonomy, extensibility and platform-independency of the proposed rule management system facilitate its incorporation in any system that is interested in data quality management.展开更多
As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the o...As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the obstacles to the adoption of this technology. In the past several years, a vast body of research has been carried out in developing various graphical techniques such as utilizing Petri Nets to analyze structural errors in rule-based systems, which utilize propositional logic. Four typical errors in rule-based systems are redundancy, circularity, incompleteness, and inconsistency. Recently, a DNA-based computing approach to detect these errors has been proposed. That paper presents algorithms which are able to detect structural errors just for special cases. For a rule base, which contains multiple starting nodes and goal nodes, structural errors are not removed correctly by utilizing the algorithms proposed in that paper and algorithms lack generality. In this study algorithms mainly based on Adleman’s operations, which are able to detect structural errors, in any form that they may arise in rule base, are presented. The potential of applying our algorithm is auspicious giving the operational time complexity of O(n*(Max{q, K, z})), in which n is the number of fact clauses;q is the number of rules in the longest inference chain;K is the number of tubes containing antecedents which are comprised of distinct number of starting nodes;and z denotes the maximum number of distinct antecedents comprised of the same number of starting nodes.展开更多
A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classe...A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.展开更多
Various trading strategies are applied in intraday high-frequency market to provide investors with reference signals to be on the right side of market at the right time. In this paper, we apply a trading strategy base...Various trading strategies are applied in intraday high-frequency market to provide investors with reference signals to be on the right side of market at the right time. In this paper, we apply a trading strategy based on the combination of ACD rules and pivot points system, which is first proposed by Mark B. Fisher, into Chinese market. This strategy has been used by millions of traders to achieve substantial profits in the last two decades, however, discussions concerning on the methods of calculating specific entry point in this trading strategy are rare, which is crucial to this strategy. We suggest an improvement to this popular strategy, providing the calculating and optimizing methods in detail to verify its effectiveness in recent Chinese futures market. Because of the high liquidity and low commissions in stock index futures market, this trading strategy achieves substantial profits .However, given the less liquidity in commodity futures market, profits decrease and even be neutralized by the relatively high commissions.展开更多
Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the app...Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.展开更多
Incompleteness of information about objects may be the greatest obstruct to performing induction learning from examples. In this paper, the concept of limited-non-symmetric similarity relation is used to formulate a n...Incompleteness of information about objects may be the greatest obstruct to performing induction learning from examples. In this paper, the concept of limited-non-symmetric similarity relation is used to formulate a new definition of approximation to an incomplete information system. With the new definition of approximation to an object set and the concept of attribute value pair, rough-setsbased methodology for certain rule acquisition in an incomplete information system is developed. The algorithm can deal with incomplete data directly and does not require changing the size of the original incomplete system. Experiments show that the algorithm provides precise and simple certain decision rules and is not affected by the missing values.展开更多
An operating rule classification system based on learning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is establishe...An operating rule classification system based on learning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is established to extract water-supply reservoir operating rules. The proposed system acquires an online identification rate of 95% for training samples and an offline rate of 85% for testing samples in a case study. The performances of the rule classification system are discussed from the rationality of the obtained rules, the impact of training samples on rule extraction, and a comparison between the rule classification system and the artificial neural network (ANN). The results indicate that the LCS is feasible and effective for the system to obtain the reservoir supply operating rules.展开更多
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri...Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.展开更多
Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key...Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [展开更多
The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw wate...The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.展开更多
A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where ...A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained.展开更多
Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the...Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the pods for each item to put on so as to minimize the number of pods to be moved when picking a batch of orders. This problem is formulated into an integer programming model. A genetic algorithm is developed to solve the large-sized problems. Computational experiments and comparison between the scattered storage strategy and random storage strategy are conducted to evaluate the performance of the model and algorithm.展开更多
文摘The competition among modem enterprises has been converted from products to capability. As the basis of competition, production system can't win the market unless it takes advantage of its capability in competition. Here in this article, the evolutionary rules of production system contributing to the establishment, renovation, reform, invention and promotion of the production of modem enterprises are observed.
文摘As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major categories such as collaborative recommendation system and content based recommendation system. In case of collaborative recommendation systems, these try to seek out users who share same tastes that of given user as well as recommends the websites according to the liking given user. Whereas the content based recommendation systems tries to recommend web sites similar to those web sites the user has liked. In the recent research we found that the efficient technique based on association rule mining algorithm is proposed in order to solve the problem of web page recommendation. Major problem of the same is that the web pages are given equal importance. Here the importance of pages changes according to the frequency of visiting the web page as well as amount of time user spends on that page. Also recommendation of newly added web pages or the pages that are not yet visited by users is not included in the recommendation set. To overcome this problem, we have used the web usage log in the adaptive association rule based web mining where the association rules were applied to personalization. This algorithm was purely based on the Apriori data mining algorithm in order to generate the association rules. However this method also suffers from some unavoidable drawbacks. In this paper we are presenting and investigating the new approach based on weighted Association Rule Mining Algorithm and text mining. This is improved algorithm which adds semantic knowledge to the results, has more efficiency and hence gives better quality and performances as compared to existing approaches.
基金Project Supported by National Natural Science Foundation of China (50607023), Natural Science Femdation of CQ CSTC (2006BB2189)
文摘As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.
文摘In new environments of trading, customer's trust is vital for the extended progress and development of electronic commerce. This paper proposes that in addition to known factors of electronic commerce B2C websites such a design of websites, security of websites and familiarity of website influence customers trust in online transactions. This paper presents an application of expert system on trust in electronic commerce. Based on experts’ judgment, a frame of work was proposed. The proposed model applies ANFIS and Mamdani inference fuzzy system to get the desired results and then results of two methods were compared. Two questionnaires were used in this study. The first questionnaire was developed for e-commerce experts, and the second one was designed for the customers of electronic websites. Based on AHP method, Expert Choice software was used to determine the priority of factors in the first questionnaire, and MATLAB and Excel were used for developing the fuzzy rules. Finally, the fuzzy logical kit was used to analyze the generated factors in the model. Our study findings show that trust in EC transactions is strongly mediated by perceived security.
基金supported by the National Natural Science Foundation of China(61473176,61402260,61573225)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021,ZR2015JL003)the Open Program from the State Key Laboratory of Management and Control for Complex Systems(20140102)
文摘Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.
文摘Production systems have a special value since they are used in state-space searching algorithms and expert systems in addition to their use as a model for problem solving in artificial intelligence. Therefore, it is of high importance to consider different techniques to improve their performance. In this research, rule base is the component of the production system that we aim to focus on. This work therefore seeks to investigate this component and its relationship with other components and demonstrate how the improvement of its quality has a great impact on the performance of the production system as a whole. In this paper, the improvement of rule base quality is accomplished in two steps. The first step involves re-writing the rules having conjunctions of literals and producing a new set of equivalent rules in which long inference chains can be obtained easily. The second step involves augmenting the rule base with inference short-cut rules devised from the long inference chains. These inference short-cut rules have a great impact on the performance of the production system. Finally, simulations are performed on randomly generated rule bases with different sizes and goals to be proved. The simulations demonstrate that the suggested enhancements are very beneficial in improving the performance of production systems.
文摘In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantages of our system are threefold. First, it aims at proposing a strong and unified rule form based on first order structure that permits the representation and management of all the types of rules and their quality via some characteristics. Second, it leads to increase the quality of rules which conditions the quality of data cleaning. Third, it uses an appropriate knowledge acquisition process, which is the weakest task in the current rule and knowledge based systems. As several research works have shown that data cleaning is rather driven by domain knowledge than by data, we have identified and analyzed the properties that distinguish knowledge and rules from data for better determining the most components of the proposed system. In order to illustrate our system, we also present a first experiment with a case study at health sector where we demonstrate how the system is useful for the improvement of data quality. The autonomy, extensibility and platform-independency of the proposed rule management system facilitate its incorporation in any system that is interested in data quality management.
文摘As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the obstacles to the adoption of this technology. In the past several years, a vast body of research has been carried out in developing various graphical techniques such as utilizing Petri Nets to analyze structural errors in rule-based systems, which utilize propositional logic. Four typical errors in rule-based systems are redundancy, circularity, incompleteness, and inconsistency. Recently, a DNA-based computing approach to detect these errors has been proposed. That paper presents algorithms which are able to detect structural errors just for special cases. For a rule base, which contains multiple starting nodes and goal nodes, structural errors are not removed correctly by utilizing the algorithms proposed in that paper and algorithms lack generality. In this study algorithms mainly based on Adleman’s operations, which are able to detect structural errors, in any form that they may arise in rule base, are presented. The potential of applying our algorithm is auspicious giving the operational time complexity of O(n*(Max{q, K, z})), in which n is the number of fact clauses;q is the number of rules in the longest inference chain;K is the number of tubes containing antecedents which are comprised of distinct number of starting nodes;and z denotes the maximum number of distinct antecedents comprised of the same number of starting nodes.
基金supported by the National Natural Science Foundation of China (61070241)the Natural Science Foundation of Shandong Province (ZR2010FM035)Science Research Foundation of University of Jinan (XKY0808)
文摘A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.
文摘Various trading strategies are applied in intraday high-frequency market to provide investors with reference signals to be on the right side of market at the right time. In this paper, we apply a trading strategy based on the combination of ACD rules and pivot points system, which is first proposed by Mark B. Fisher, into Chinese market. This strategy has been used by millions of traders to achieve substantial profits in the last two decades, however, discussions concerning on the methods of calculating specific entry point in this trading strategy are rare, which is crucial to this strategy. We suggest an improvement to this popular strategy, providing the calculating and optimizing methods in detail to verify its effectiveness in recent Chinese futures market. Because of the high liquidity and low commissions in stock index futures market, this trading strategy achieves substantial profits .However, given the less liquidity in commodity futures market, profits decrease and even be neutralized by the relatively high commissions.
文摘Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.
文摘Incompleteness of information about objects may be the greatest obstruct to performing induction learning from examples. In this paper, the concept of limited-non-symmetric similarity relation is used to formulate a new definition of approximation to an incomplete information system. With the new definition of approximation to an object set and the concept of attribute value pair, rough-setsbased methodology for certain rule acquisition in an incomplete information system is developed. The algorithm can deal with incomplete data directly and does not require changing the size of the original incomplete system. Experiments show that the algorithm provides precise and simple certain decision rules and is not affected by the missing values.
文摘An operating rule classification system based on learning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is established to extract water-supply reservoir operating rules. The proposed system acquires an online identification rate of 95% for training samples and an offline rate of 85% for testing samples in a case study. The performances of the rule classification system are discussed from the rationality of the obtained rules, the impact of training samples on rule extraction, and a comparison between the rule classification system and the artificial neural network (ANN). The results indicate that the LCS is feasible and effective for the system to obtain the reservoir supply operating rules.
基金Acknowledgments: The work was supported in part by the National Science Foundation of China (No. 70571032) and the Scientific Research Foundation of Hunan Provincial Education Department (No. 06C367).
文摘Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.
文摘Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [
基金This work was supported by the project 863 ofChina(No.863-511092)
文摘The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.
基金the Outstanding Oversea Award of the Chinese Academy of Sciences (No. 2004-1-4)the Natural Science Foundationof China (No. 60534010)
文摘A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained.
文摘Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the pods for each item to put on so as to minimize the number of pods to be moved when picking a batch of orders. This problem is formulated into an integer programming model. A genetic algorithm is developed to solve the large-sized problems. Computational experiments and comparison between the scattered storage strategy and random storage strategy are conducted to evaluate the performance of the model and algorithm.