期刊文献+
共找到870篇文章
< 1 2 44 >
每页显示 20 50 100
Target Ship Identification Algorithm Based on Comprehensive Correlation Discriminant and Information Entropy 被引量:1
1
作者 Zhaoguo Shu 《Journal of Computer and Communications》 2020年第3期61-71,共11页
Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the pass... Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the passive sensor is not fully utilized, and there is a certain ambiguity in the assignment relationship of the emitters-ship. They can’t conclude the accurate and reliable assignment relationship of the emitters-ship. Therefore, this paper proposes a comprehensive correlation discriminant method to obtain a more reliable and comprehensive emitters-ship assignment, and then uses information entropy method to identify the type of the target ship on the basis of this association and assign the credibility. The simulation results show that this algorithm can effectively solve the problem of target ship type identification using the information of multi-passive sensors. 展开更多
关键词 Multi-Passive Sensor Information Entropy target ship IDENTIFICATION Association IDENTIFICATION
下载PDF
Construction of Ship Target Image Library Based on 3DS MAX and AP Algorithm
2
作者 Chao Ji Weixing Xia Zhengping Tang 《Modern Electronic Technology》 2023年第2期20-25,共6页
To achieve accurate classification and recognition of ship target types,it is necessary to establish a sample library of ship targets to be identified.On the basis of exploring the principles of building a ship target... To achieve accurate classification and recognition of ship target types,it is necessary to establish a sample library of ship targets to be identified.On the basis of exploring the principles of building a ship target image library,the paper determines the sample set.Using 3DS MAX software as the platform,combined with the accurate 3D model of the ship in an offline state,the software fully utilizes its own rendering and animation functions to achieve the automatic generation of multi-view and multi-scale views of ship targets.To reduce the storage capacity of the image database,a construction method of the ship target image database based on the AP algorithm is presented.The algorithm can obtain the optimal cluster number,reduce the data storage capacity of the image database,and save the calculation amount for the subsequent matching calculation. 展开更多
关键词 AP algorithm ship target image library 3DS MAX Image recognition
下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
3
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
下载PDF
A new CFAR ship target detection method in SAR imagery 被引量:14
4
作者 JI Yonggang ZHANG Jie +1 位作者 MENG Jummin ZHANG Xi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第1期12-16,共5页
Many ship target detection methods have been developed since it was verified that ship could be imaged with the space-based SAR systems. Most developed detection methods mostly emphasized ship detection rate but not c... Many ship target detection methods have been developed since it was verified that ship could be imaged with the space-based SAR systems. Most developed detection methods mostly emphasized ship detection rate but not computation time. By making use of the advantages of the K-distribution CFAR method and two-parameter CFAR method, a new CFAR ship target detection algorithm was proposed. In that new method, we use the K-distribution CFAR method to calculate a global threshold with a certain false-alarm rate. Then the threshold is applied to the whole SAR imagery to determine the possible ship target, pixcls, and a binary image is given as tile preliminary result. Mathematical morphological filter are used to filter the binary image. After that step, we use tile two-parameter CFAR method to detect the ship targets. In the step, the local sliding window only works in the possible ship target pixels of the SAR imagery. That step avoids the statistical calculation of the background pixels, so the method proposed can much improve the processing speed. In order to test the new method, two SAN imagery with different background were used, and the detection result shows that that method can work well in different background circumstances with high detection rate. Moreover, a synchronous ship detection experiment was carried out in Qingdao port in October 28, 2005 to verify the new method and one ENVISAT ASAR imagery was acquired to detect ship targets. It can be concluded from the experiment that the new method not only has high detection rate, but also is time-consuining, and is suitable for the operational ship detection system. 展开更多
关键词 ship target diction SAR. CFAR
下载PDF
New method of time-frequency representation for ISAR imaging of ship targets 被引量:2
5
作者 Yong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第4期502-511,共10页
Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-var... Inverse synthetic aperture radar (ISAR) imaging of ship targets is very important in the national defense. For the high maneuverability of ship targets, the Doppler frequency shift of the received signal is time-varying, which will degrade the ISAR image quality for the traditional range-Doppler (RD) algorithm. In this paper, the received signal in a range bin is characterized as the multi-component polynomial phase signal (PPS) after the motion compensation, and a new approach of time-frequency represen- tation, generalized polynomial Wigner-Ville distribution (GPWVD), is proposed for the azimuth focusing. The GPWVD is based on the exponential matched-phase (EMP) principle. Compared with the conventional polynomial Wigner-Ville distribution (PWVD), the EMP principle transfers the non-integer lag coefficients of the PWVD to the position of the exponential of the signal, and the interpolation can be avoided completely. For the GPWVD, the cross-terms between multi-component signals can be reduced by decomposing the GPWVD into the convolution of Wigner-Ville distribution (WVD) and the spectrum of phase adjust functions. The GPWVD is used in the ISAR imaging of ship targets, and the high quality instantaneous ISAR images can be obtained. Simulation results and measurement data demonstrate the effectiveness of the proposed new method. 展开更多
关键词 inverse synthetic aperture radar (ISAR) ship target polynomial phase signal (PPS) generalized polynomial Wigner-Ville distribution (GPWVD).
下载PDF
Imaging algorithm of multi-ship motion target based on compressed sensing 被引量:2
6
作者 Lin Zhang Yicheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期790-796,共7页
An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azi... An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability. 展开更多
关键词 synthetic aperture radar(SAR) compressed sensing(CS) multiple ships moving target sparse reconstruction
下载PDF
Novel and Comprehensive Approach for the Feature Extraction and Recognition Method Based on ISAR Images of Ship Target 被引量:1
7
作者 Yong Wang Pengkai Zhu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第5期12-19,共8页
This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images... This paper proposes a novel and comprehensive method of automatic target recognition based on real ISAR images with the aim to recognize the non-cooperative ship targets. The special characteristics of the ISAR images for the real data compared with the simulated ISAR images are analyzed firstly. Then,the novel technique for the target recognition is proposed,and it consists of three steps,including the preprocessing,feature extraction and classification. Some segmentation and morphological methods are used in the preprocessing to obtain the clear target images. Then,six different features for the ISAR images are extracted.By estimating the features' conditional probability, the effectiveness and robustness of these features are demonstrated. Finally,Fisher's linear classifier is applied in the classification step. The results for the allfeature space are provided to illustrate the effectiveness of the proposed method. 展开更多
关键词 ISAR images FEATURE extraction recognition ship target
下载PDF
Semisupervised heterogeneous ensemble for ship target discrimination in synthetic aperture radar images
8
作者 Yongxu Li Xudong Lai Mingwei Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第7期180-192,共13页
Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongl... Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongly detected in complex backgrounds.These non-ship false alarms can be excluded by training discriminators,and the desired accuracy is obtained with enough verified samples.However,the reliable verification of targets in large-scene SAR images still inevitably requires manual interpretation,which is difficult and time consuming.To address this issue,a semisupervised heterogeneous ensemble ship target discrimination method based on a tri-training scheme is proposed to take advantage of the plentiful candidate targets.Specifically,various features commonly used in SAR image target discrimination are extracted,and several acknowledged classification models and their classic variants are investigated.Multiple discriminators are constructed by dividing these features into different groups and pairing them with each model.Then,the performance of all the discriminators is tested,and better discriminators are selected for implementing the semisupervised training process.These strategies enhance the diversity and reliability of the discriminators,and their heterogeneous ensemble makes more correct judgments on candidate targets,which facilitates further positive training.Experimental results demonstrate that the proposed method outperforms traditional tritraining. 展开更多
关键词 synthetic aperture radar ship target discrimination non-ship false alarms semisupervised heterogeneous ensemble
下载PDF
A Novel SAR Image Ship Small Targets Detection Method
9
作者 Yu Song Min Li +3 位作者 Xiaohua Qiu Weidong Du Yujie He Xiaoxiang Qi 《Journal of Computer and Communications》 2021年第2期57-71,共15页
To satisfy practical requirements of high real-time accuracy and low computational complexity of synthetic aperture radar (SAR) image ship small target detection, this paper proposes a small ship target detection meth... To satisfy practical requirements of high real-time accuracy and low computational complexity of synthetic aperture radar (SAR) image ship small target detection, this paper proposes a small ship target detection method based on the improved You Only Look Once Version 3 (YOLOv3). The main contributions of this study are threefold. First, the feature extraction network of the original YOLOV3 algorithm is replaced with the VGG16 network convolution layer. Second, general convolution is transformed into depthwise separable convolution, thereby reducing the computational cost of the algorithm. Third, a residual network structure is introduced into the feature extraction network to reuse the shallow target feature information, which enhances the detailed features of the target and ensures the improvement in accuracy of small target detection performance. To evaluate the performance of the proposed method, many experiments are conducted on public SAR image datasets. For ship targets with complex backgrounds and small ship targets in the SAR image, the effectiveness of the proposed algorithm is verified. Results show that the accuracy and recall rate improved by 5.31% and 2.77%, respectively, compared with the original YOLOV3. Furthermore, the proposed model not only significantly reduces the computational effort, but also improves the detection accuracy of ship small target. 展开更多
关键词 The SAR Images The Neural Network ship Small target target Detection
下载PDF
改进YOLOX在近岸船舶检测中的应用 被引量:1
10
作者 张立国 赵嘉士 +2 位作者 金梅 曾欣 沈明浩 《计量学报》 CSCD 北大核心 2024年第1期30-37,共8页
为了解决近岸船舶检测时目标尺度变化大,环境干扰严重等问题,提出了一种改进YOLOX的无锚框检测算法。首先,在主干网络中引入CoT模块,通过动态利用上下文信息来增强表达能力,降低环境干扰的影响;其次,将SimAM注意力嵌在特征金字塔和检测... 为了解决近岸船舶检测时目标尺度变化大,环境干扰严重等问题,提出了一种改进YOLOX的无锚框检测算法。首先,在主干网络中引入CoT模块,通过动态利用上下文信息来增强表达能力,降低环境干扰的影响;其次,将SimAM注意力嵌在特征金字塔和检测头之间,丰富语义信息,提升小目标检测精度。再利用CIOU来取代原有损失函数,以提高收敛速度;最后,使用深度可分离卷积替换特征金字塔中普通卷积,减少参数量,提升检测速度。实验结果表明:在SeaShips数据集上,改进后模型在减少参数量的同时,精度提高了6.73%,均值平均精度(mAP)达到了96.63%,检测速度达到了48.6帧/s,能够实时、高精度地检测近岸船舶。 展开更多
关键词 视觉检测 船舶目标 深度学习 YOLOX CoT模块 SimAM注意力
下载PDF
基于旋转不变性的高分辨率遥感影像船舶检测
11
作者 徐红明 王兴华 +1 位作者 方诚 徐昕辉 《中国航海》 CSCD 北大核心 2024年第2期120-127,共8页
近年来,随着高分辨率遥感影像和船舶智能化的发展,通过遥感技术在大范围内对船舶目标进行检测识别已在海洋监管和安全等领域发挥出重要的现实意义。考虑到人类的视觉回路系统中对外界特定目标有很强的方向选择性,借鉴视觉的方向选择性机... 近年来,随着高分辨率遥感影像和船舶智能化的发展,通过遥感技术在大范围内对船舶目标进行检测识别已在海洋监管和安全等领域发挥出重要的现实意义。考虑到人类的视觉回路系统中对外界特定目标有很强的方向选择性,借鉴视觉的方向选择性机制,将有助于提升舰船检测识别任务的性能。从3个方面来模拟这种视觉的方向性选择机制:对卷积层采用Gabor卷积核分解的方法来模拟视觉回路的方向性,使深度卷积网络具有方向不变性;通过采用方向回归的方式估计舰船目标的主方向,模拟方向性选择机制;结合方向性目标来提升舰船检测识别任务的性能。试验结果表明:与快速区域卷积神经网络(Faster R-CNN)、单步多框检测(SSD)和定向响应网络(ORN)方法相比,该方法能取得较好的效果,表现出潜在的优势,均值平均精度(mAP)可达到约98%。 展开更多
关键词 舰船遥感 目标检测 舰船识别 深度卷积网络
下载PDF
基于局部显著特征聚焦学习的SAR舰船智能检测
12
作者 金术玲 李秀琴 +2 位作者 柳霜 束宇翔 李东 《信号处理》 CSCD 北大核心 2024年第5期865-877,共13页
合成孔径雷达(Synthetic Aperture Radar,SAR)图像的船舶目标检测,因其广泛的应用前景而备受关注。近年来,基于深度学习的SAR图像船舶目标检测在多种场景中表现出较好性能。然而,由于SAR独特的成像机制,舰船目标通常与背景环境具有相似... 合成孔径雷达(Synthetic Aperture Radar,SAR)图像的船舶目标检测,因其广泛的应用前景而备受关注。近年来,基于深度学习的SAR图像船舶目标检测在多种场景中表现出较好性能。然而,由于SAR独特的成像机制,舰船目标通常与背景环境具有相似的散射特性使得实际的船舶目标难以辨识,且船舶目标尺度较小,导致准确检测船舶目标具有挑战性。为了缓解这一问题,本文提出了一种基于局部显著特征聚焦学习的SAR舰船检测方法。首先,设计了双重注意力模块,通过对通道级和空间级的特征进行双重注意力加权,以充分地探索船舰目标的关键语义特征,从而提升模型的深度提取能力。随后,为了进一步提升模型对船舶目标特征的表征能力,设计了平衡特征金字塔网络模块,通过对舰船目标的多尺度特征进行缩放、增强和聚合处理,以实现多尺度特征间的语义和空间信息均衡分布。最后,在SAR舰船检测数据集(SAR Ship Detection Dataset,SSDD)上进行了广泛的实验分析,实验结果一致性地证明了所提方法在提升SAR图像舰船目标检测准确性方面的有效性。 展开更多
关键词 合成孔径雷达 舰船目标检测 注意力机制 多特征均衡
下载PDF
基于MSRCP与改进YOLOv5的雾天船舶检测
13
作者 李伟 张雪 +1 位作者 单雄飞 宁君 《计算机仿真》 2024年第5期204-208,482,共6页
针对海上雾天获取到的图像中小目标船舶识别效果低下、漏检率高等问题,提出了一种融合MSRCP算法的改进YOLOv5模型。在输入端加入MSRCP算法对图像进行预处理,提高远处船舶的特征;采用改进k-means聚类方法设计先验框,加快模型收敛速度,使... 针对海上雾天获取到的图像中小目标船舶识别效果低下、漏检率高等问题,提出了一种融合MSRCP算法的改进YOLOv5模型。在输入端加入MSRCP算法对图像进行预处理,提高远处船舶的特征;采用改进k-means聚类方法设计先验框,加快模型收敛速度,使锚框和边界框更匹配;在网络部分采用了SoftPool池化替换原来的MaxPool池化,保留更多的图像特征,提高图像的检测精度。经实验,改进后的算法MAP值提高了12%,平均召回率提升了16%,检测速度达到40帧/秒,能够在满足实时性检测的前提下,更好地完成对大雾天气下的船舶识别。 展开更多
关键词 目标检测 船舶识别 雾天船舶检测
下载PDF
基于特征融合的无人船目标识别系统设计
14
作者 颜悦 游学军 吕太之 《舰船科学技术》 北大核心 2024年第12期174-177,共4页
通过特征融合可获取全面的目标特征信息,利于提升目标识别的稳定性,为此设计基于特征融合的无人船目标识别系统。利用无人船搭载红外热成像仪与可见光摄像头,采集目标红外与可见光图像;通过处理器和可编程逻辑控制器,设计特征提取模块,... 通过特征融合可获取全面的目标特征信息,利于提升目标识别的稳定性,为此设计基于特征融合的无人船目标识别系统。利用无人船搭载红外热成像仪与可见光摄像头,采集目标红外与可见光图像;通过处理器和可编程逻辑控制器,设计特征提取模块,用于提取红外与可见光图像的无人船目标特征;特征融合模块利用典型相关分析理论,融合红外与可见光图像的无人船目标特征;目标识别模块通过径向基函数网络,结合特征融合结果,输出无人船目标识别结果。实验结果证明,该系统可有效采集无人船目标的红外与可见光图像,完成特征提取;该系统具备较优的特征融合效果,并精准实现无人船目标识别。 展开更多
关键词 特征融合 无人船 目标识别 可编程逻辑 典型相关分析
下载PDF
DDPG深度强化学习算法在无人船目标追踪与救援中的应用
15
作者 宋雷震 吕东芳 《黑龙江大学工程学报(中英俄文)》 2024年第1期58-64,共7页
为保证海上救援活动的高效性,研究结合深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)从状态空间、动作空间、奖励函数方面对船只追踪救援目标算法进行设计,并实际应用到无人船追踪救援之中。结果显示DDPG算法的稳... 为保证海上救援活动的高效性,研究结合深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)从状态空间、动作空间、奖励函数方面对船只追踪救援目标算法进行设计,并实际应用到无人船追踪救援之中。结果显示DDPG算法的稳定成功率接近100%,性能优异。该设计的算法最终回合累积奖励值能够稳定在10左右,而平均时长则能稳定在80 s左右,能够根据周边环境的状态调整自己的运动策略,满足海上救援活动中的紧迫性要求,能为相关领域的研究提供一条新的思路。 展开更多
关键词 无人船 目标追踪 海上救援 深度确定性策略梯度算法(DDPG)
下载PDF
改进FCOS的SAR图像舰船检测算法
16
作者 桑林 《黑龙江科技大学学报》 CAS 2024年第4期637-641,共5页
针对SAR图像中舰船检测的目标尺度变化大及背景复杂等影响因素,提出一种基于FCOS的一阶段舰船目标检测算法。采用基于拆分注意力和分组卷积的ResNeSt网络作为主干网络进行提取特征,同时在特征金字塔基础上增加聚合路径和注意力机制,提... 针对SAR图像中舰船检测的目标尺度变化大及背景复杂等影响因素,提出一种基于FCOS的一阶段舰船目标检测算法。采用基于拆分注意力和分组卷积的ResNeSt网络作为主干网络进行提取特征,同时在特征金字塔基础上增加聚合路径和注意力机制,提升特征融合能力,实现对网络结构的优化。结果表明,改进方法相对于基线网络平均精度提升了2.15%,精准率提升了2.4%,召回率提升了3.59%。该研究在处理SAR图像中舰船检测任务时具有较好的性能。 展开更多
关键词 目标识别 SAR图像 舰船检测 FPN
下载PDF
基于模糊神经网络的舰船雷达图像弱小目标检测
17
作者 张勇飞 陈涛 《舰船科学技术》 北大核心 2024年第9期147-150,共4页
舰船雷达图像信息的维度较高,导致弱小目标的关键特征难以被精准提取,降低了弱小目标检测的可靠性,因此提出一种基于模糊神经网络的舰船雷达图像弱小目标检测方法。该方法对舰船雷达图像进行背景校正,利用图像灰度值加性模型从图像中提... 舰船雷达图像信息的维度较高,导致弱小目标的关键特征难以被精准提取,降低了弱小目标检测的可靠性,因此提出一种基于模糊神经网络的舰船雷达图像弱小目标检测方法。该方法对舰船雷达图像进行背景校正,利用图像灰度值加性模型从图像中提取弱小目标。最后将提取的弱小目标输入到模糊神经网络中,输出的结果即为舰船雷达图像弱小目标检测结果。通过实验证明,在不同高斯噪声环境中,该方法能够准确地检测出雷达图像中的弱小目标,并具有较快的检测速度。 展开更多
关键词 舰船雷达图像 弱小目标检测 图像灰度值 高斯噪声
下载PDF
海上跨域运载编队队形配置问题研究
18
作者 黄力伟 江晓世 《船舶》 2024年第3期114-117,共4页
无论是战争时期还是和平时期,海上跨域运载都是关乎国家利益的重要行动,而护航编队的队形配置是海上跨域运载行动中需要重点关注和考虑的问题。该文针对海上跨域运载编队的队形配置问题,采用定量分析方法,建立了护航军舰拦截海面目标模... 无论是战争时期还是和平时期,海上跨域运载都是关乎国家利益的重要行动,而护航编队的队形配置是海上跨域运载行动中需要重点关注和考虑的问题。该文针对海上跨域运载编队的队形配置问题,采用定量分析方法,建立了护航军舰拦截海面目标模型,对双舰伴随跨域运载时编队规模和护航军舰位置进行了分析,得出了在保证拦截到目标情况下护航军舰与运载编队的队形配置条件,并结合实际情况给出海上跨域运载编队队形配置需要重点关注的问题。该结论不仅从定性方面,还着重从定量方面为海上跨域运载行动指挥提供决策支持。 展开更多
关键词 跨域运载 编队 护航 目标拦截 队形配置
下载PDF
多模态信息融合舰船目标识别研究进展 被引量:1
19
作者 吴文静 王中训 +1 位作者 但波 邢子杰 《探测与控制学报》 CSCD 北大核心 2024年第2期1-12,共12页
舰船目标识别的信息源主要来自现代高分辨率成像雷达形成的舰船目标信息,包括高分辨距离像、船舶自动识别系统信息以及合成孔径雷达成像。在对海探测环境相对复杂的情况下,基于单模态信息对海上舰船目标识别的能力有限,而利用多模态信... 舰船目标识别的信息源主要来自现代高分辨率成像雷达形成的舰船目标信息,包括高分辨距离像、船舶自动识别系统信息以及合成孔径雷达成像。在对海探测环境相对复杂的情况下,基于单模态信息对海上舰船目标识别的能力有限,而利用多模态信息融合将更有益于实现对海上目标高效的侦察监视和识别。首先,对单模态舰船目标识别方法进行梳理和总结,分析目前不同舰船目标识别方法存在的优势和不足;然后对多模态信息融合舰船目标识别常用数据集进行介绍,并对新方法、新模型进行了深入分析;最后对舰船目标识别未来发展趋势进行展望,为后续基于多模态信息融合的舰船目标识别方法研究提供参考。 展开更多
关键词 高分辨距离像 船舶自动识别系统 合成孔径雷达 多模态信息融合 舰船目标识别
下载PDF
基于深度学习和改进证据理论的海上多源舰船信息融合识别方法
20
作者 任秉旺 王肖霞 +1 位作者 吉琳娜 杨风暴 《现代电子技术》 北大核心 2024年第3期1-6,共6页
为了解决复杂环境下基于单一舰船信息进行目标识别准确率较低,以及多源舰船信息高冲突时无法有效融合识别的问题,提出一种基于深度学习和改进证据理论的海上多源舰船信息融合识别方法。主要从两方面入手:首先利用深度学习高效特征学习... 为了解决复杂环境下基于单一舰船信息进行目标识别准确率较低,以及多源舰船信息高冲突时无法有效融合识别的问题,提出一种基于深度学习和改进证据理论的海上多源舰船信息融合识别方法。主要从两方面入手:首先利用深度学习高效特征学习能力实现更加准确的分类识别;然后通过改进的证据理论实现多证据体的高效正确融合。高悖论证据融合实验结果表明,相比于其他融合方法,文中方法融合结果具有更高的概率分配值。同时,在不同信噪比条件下对单模式识别以及文中融合识别方法进行测试,文中方法在噪声情况下仍能比单模式平均水平高出6.53%的识别性能。因此,利用文中融合识别方法能够提高舰船目标识别系统的识别准确率和鲁棒性。 展开更多
关键词 改进D⁃S证据理论 深度学习 信息融合 目标识别 舰船目标 融合识别
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部