期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Expression changes in tau and microtubule-associated proteins in rat testicular interstitium
1
作者 Zi-LongLiu Wan-HongZhang +3 位作者 Sheng-HongLiu Xiao-LiWang FangWang Xue-JunKang 《Asian Journal of Andrology》 SCIE CAS CSCD 2004年第1期52-52,共1页
关键词 tau protein microtubule-associated proteins testis interstitium AGING IMMUNOHISTOCHEMISTRY
下载PDF
Cerebrospinal fluid amyloid beta and tau proteins in atypical Parkinsonism: a review
2
作者 Vasilios C.Constantinides George P.Paraskevas +4 位作者 Fotini Boufidou Mara Bourbouli Panagiotis G.Paraskevas Leonidas Stefanis Elisabeth Kapaki 《Neuroimmunology and Neuroinflammation》 2020年第2期120-131,共12页
Progressive supranuclear palsy,corticobasal degeneration,multiple system atrophy and dementia with Lewy bodies are the most common causes of atypical Parkinsonism and enter the differential diagnosis of Parkinson'... Progressive supranuclear palsy,corticobasal degeneration,multiple system atrophy and dementia with Lewy bodies are the most common causes of atypical Parkinsonism and enter the differential diagnosis of Parkinson's disease.multiple system atrophy,dementia with Lewy bodies and Parkinson's disease are synucleinopathies,whereas progressive supranuclear palsy and corticobasal degeneration are tauopathies.Multiple cerebrospinal fluid markers have been applied on cohorts of patients with Parkinsonism,with the aim to develop biomarkers for these disorders.Total tau(τΤ),phosphorylated tau at threonine 181(τP-181)and amyloid-beta with 42 amino acids(Aβ42)are considered classical biomarkers for Alzheimer's disease.The aim of the present study is to review the literature regarding these classical cerebrospinal fluid biomarkers in cohorts with Parkinsonism,as well as present data on novel approaches regarding analysis of these proteins. 展开更多
关键词 Biomarkers cerebrospinal fluid progressive supranuclear palsy corticobasal degeneration multiple system atrophy dementia with Lewy bodies tau protein phosphorylated tau protein amyloid beta
原文传递
Investigating the Head Impact Force-Induced Evolution of Hyperphosphorylated Tau Proteins in Brain Tissue Through Mechanical Mesoscale Finite Element Simulation
3
作者 Ge He Lei Fan 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第4期705-715,共11页
For human heads that experienced repetitive subconcussive impacts,abnormal accumulation of hyperphosphorylated tau(p-tau)proteins was found in the postmortem brain tissue.To numerically understand the cause–effect re... For human heads that experienced repetitive subconcussive impacts,abnormal accumulation of hyperphosphorylated tau(p-tau)proteins was found in the postmortem brain tissue.To numerically understand the cause–effect relationship between the external force and the microscopic volume change of the p-tau protein,we created a mesoscale finite element model of the multilayer brain tissue containing microscopic voids representing the p-tau proteins.The model was applied under the loading boundary conditions obtained from a larger length scale simulation.A formerly developed internal state variable elastoplasticity model was implemented to describe the constitutive behaviors of gray and white matters,while the cerebrospinal fluid was assumed to be purely elastic.The effects of the initial sizes and distances of p-tau proteins located at four different brain regions(frontal,parietal,temporal and occipital lobes)on their volumetric evolutions were studied.It is concluded that both the initial sizes and distances of the proteins have more or less(depending on the specific brain region)influential effects on the growth or contraction rate of the p-tau protein.The p-tau proteins located within the brain tissue at the frontal and occipital lobes are more heavily affected by the frontal impact load compared with those at the parietal and temporal lobes.In summary,the modeling approach presented in this paper provides a strategy for mechanically studying the evolution of p-tau proteins in the brain tissue and gives insight into understanding the correlation between macroscopic force and microstructure change of the brain tissue. 展开更多
关键词 Traumatic head injury Hyperphosphorylated tau(p-tau)protein Internal state variable Brain tissue
原文传递
Effect of pesticides on phosphorylation of tau protein,and its influence on Alzheimer’s disease
4
作者 Erandis D Torres-Sánchez Genaro G Ortiz +2 位作者 Emmanuel Reyes-Uribe Juan H Torres-Jasso Joel Salazar-Flores 《World Journal of Clinical Cases》 SCIE 2023年第24期5628-5642,共15页
Alzheimer’s disease(AD)is a progressive and neurodegenerative illness which results in alterations in cognitive development.It is characterized by loss/dysfunction of cholinergic neurons,and formation of amyloid plaq... Alzheimer’s disease(AD)is a progressive and neurodegenerative illness which results in alterations in cognitive development.It is characterized by loss/dysfunction of cholinergic neurons,and formation of amyloid plaques,and formation of neurofibrillary tangles,among other changes,due to hyperphosphorylation of tau-protein.Exposure to pesticides in humans occurs frequently due to contact with contaminated food,water,or particles.Organochlorines,organophosphates,carbamates,pyrethroids and neonicotinoids are associated with the most diagnosed incidents of severe cognitive impairment.The aim of this study was to determine the effects of these pesticides on the phosphorylation of tau protein,and its cognitive implications in the development of AD.It was found that exposure to pesticides increased the phosphorylation of tau protein at sites Ser198,Ser199,Ser202,Thr205,Ser396 and Ser404.Contact with these chemicals altered the enzymatic activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta,and protein phosphatase-2A.Moreover,it altered the expression of the microtubule associated protein tau gene,and changed levels of intracellular calcium.These changes affected tau protein phosphorylation and neuroinflammation,and also increased oxidative stress.In addition,the exposed subjects had poor level of performance in tests that involved evaluation of novelty,as test on verbal,non-verbal,spatial memory,attention,and problem-solving skills. 展开更多
关键词 ORGANOCHLORINES Organophosphates CARBAMATES PYRETHROIDS NEONICOTINOIDS tau protein
下载PDF
Diagnostic Prospectives with Tau Protein and Imaging Techniques to Detect Development of Chronic Traumatic Encephalopathy
5
作者 Amit Naskar Danielle Jayanty +3 位作者 Kimberly Head Gulshan L. Khanna Vatsalya Vatsalya Arpan Banerjee 《Journal of Behavioral and Brain Science》 CAS 2023年第4期55-65,共11页
Brain damage sustained from repeated blows in boxing, wrestling, and other combat sports has serious physical and mental health consequences. The degenerative brain disease, chronic traumatic encephalopathy (CTE), pre... Brain damage sustained from repeated blows in boxing, wrestling, and other combat sports has serious physical and mental health consequences. The degenerative brain disease, chronic traumatic encephalopathy (CTE), presents clinically with memory loss, aggression, difficulty in rational thinking and other cognitive problems. This spectrum, which mimics Alzheimer’s disease, is diagnosed post-mortem through a brain biopsy in many professional athletes. However, little is known about the process of development and how to identify vulnerable individuals who may be on course for developing CTE. Boxing is a sport that has a severe toll on athletes’ health, primarily on their brain health and function. This review addresses the concerns of brain injury, describes the pathologies that manifest in multiple scales, e.g., molecular and cognitive, and also proposes possible diagnostic and prognostic markers to characterize the early onset of CTE along with the aim to identify a starting point for future precautions and interventions. 展开更多
关键词 ATHLETES Axonal Injury tau Protein Chronic Traumatic Encephalopathy Traumatic Brain Injury BOXING WRESTLING
下载PDF
Impact of apolipoprotein E isoforms on sporadic Alzheimer's disease:beyond the role of amyloid beta
6
作者 Madia Lozupone Francesco Panza 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期80-83,共4页
The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully unders... The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype. 展开更多
关键词 Alzheimer's disease AMYLOID-BETA apolipoprotein E DEMENTIA glymphatic transport LIPIDS neuropsychiatric symptoms neurovascular unit tau protein
下载PDF
Ketamine induces tau hyperphosphorylation at serine 404 in the hippocampus of neonatal rats 被引量:5
7
作者 Haiyan Jin Zhiyong Hu +3 位作者 Mengjie Dong Yidong Wu Zhirui Zhu Lili Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第17期1590-1596,共7页
Male Wistar 7-day-old rats were injected with 40 mg/kg ketamine intraperitoneally, followed by three additional injections of 20 mg/kg ketamine each upon restoration of the righting reflex. Neonatal rats injected with... Male Wistar 7-day-old rats were injected with 40 mg/kg ketamine intraperitoneally, followed by three additional injections of 20 mg/kg ketamine each upon restoration of the righting reflex. Neonatal rats injected with equivalent volumes of saline served as controls. Hippocampal samples were collected at 1,7 or 14 days following administration. Electron microscopy showed that neuronal structure changed noticeably following ketamine treatment. Specifically, microtubular structure became irregular and disorganized. Quantitative real time-PCR revealed that phosphorylated tau mRNA was upregulated after ketamine. Western blot analysis demonstrated that phosphorylated tau levels at serine 396 initially decreased at 1 day after ketamine injection, and then gradually returned to control values. At 14 days after injection, levels of phosphorylated tau were higher in the ketamine group than in the control group. Tau protein phosphorylated at serine 404 significantly increased after ketamine injection and then gradually decreased with time. However, the levels of tau protein at serine 404 were significantly greater in the ketamine group than in the control group until 14 days. The present results indicate that ketamine induces an increase of phosphorylated tau mRNA and excessive phosphorylation of tau protein at serine 404, causing disruption of microtubules in the neonatal rat hippocampus and potentially resulting in damage to hippocampal neurons. 展开更多
关键词 neural regeneration tau protein KETAMINE phosophorylation neonatal rats HIPPOCAMPUS neurons ANESTHETICS cognition grants-supported paper NEUROREGENERATION
下载PDF
Effects of microtubule-associated protein tau expression on neural stem cell migration after spinal cord injury 被引量:6
8
作者 Zhi-ping Qi Guo-xiang Wang +4 位作者 Peng Xia Ting-ting Hou Hong-li Zhou Tie-jun Wang Xiao-yu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期332-337,共6页
Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau express... Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau expression in the injured spinal cord. The second aim was to determine whether tau can regulate neural stem cell migration, a critical factor in the successful treatment of spinal cord injury. We established rat models of spinal cord injury and injected them with mouse hippocampal neural stem cells through the tail vein. We used immunohistochemistry to show that the expression of tau protein and the number of migrated neural stem cells were markedly increased in the injured spinal cord. Furthermore, using a Transwell assay, we showed that neural stem cell migration was not affected by an elevated tau concentration in the outer chamber, but it was decreased by changes in intracellular tau phosphorylation state. These results demonstrate that neural stem cells have targeted migration capability at the site of injury, and that although tau is not a chemokine for targeted migration of neural stem cells, intracellular tau phosphorylation/dephosphorylation can inhibit cell migration. 展开更多
关键词 nerve regeneration spinal cord injury tau protein neural stem cells transwelI chambers phosphatase 2A cell transplantation PHOSPHORYLATION MIGRATION okadaic acid C2-ceramide neural regeneration
下载PDF
Neurofibrillary tangles in Alzheimer's disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics 被引量:4
9
作者 athanasios metaxas stefan j.kempf 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1579-1581,共3页
As a key contributor to memory storage, the synapse is one of the earliest affected neuronal components in Alzheimer's disease (AD). Under physiological conditions, the synaptic con- nections between neurons underg... As a key contributor to memory storage, the synapse is one of the earliest affected neuronal components in Alzheimer's disease (AD). Under physiological conditions, the synaptic con- nections between neurons undergo activity-dependent func- tional and morphological re-organisation. This dynamic, 'plastic' neural ability critically depends on the structural integrity of the synapse. Thus, proteins that are implicated in preserving the organisation and dynamics of synaptic connections, including microtubules of the cytoskeleton and associated proteins, have attracted much focus for their involvement in the malfunction- ing AD synapse. 展开更多
关键词 Neurofibrillary tangles in Alzheimer’s disease elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics NFT
下载PDF
Effect of erythropoietin combined with hypothermia on serum tau protein levels and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy 被引量:22
10
作者 Hong-yan Lv Su-jing Wu +7 位作者 Qiu-li Wang Li-hong Yang Peng-shun Ren Bao-jun Qiao Zhi-ying Wang Jia-hong Li Xiu-ling Gu Lian-xiang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1655-1663,共9页
Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promis... Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promising neuroprotective agents.We hypothesized that erythropoietin combined with hypothermia will improve efficacy of neonatal hypoxic-ischemic encephalopathy treatment.In this study,41 neonates with moderate/severe hypoxic-ischemic encephalopathy were randomly divided into a control group(hypothermia alone for 72 hours,n = 20) and erythropoietin group(hypothermia + erythropoietin 200 IU/kg for 10 days,n = 21).Our results show that compared with the control group,serum tau protein levels were lower and neonatal behavioral neurological assessment scores higher in the erythropoietin group at 8 and 12 days.However,neurodevelopmental outcome was similar between the two groups at 9 months of age.These findings suggest that erythropoietin combined with hypothermia reduces serum tau protein levels and improves neonatal behavioral neurology outcome but does not affect long-term neurodevelopmental outcome. 展开更多
关键词 nerve regeneration erythropoietin hypothermia hypoxic-ischemic encephalopathy neonate tau protein biomarkers prognosis neuroprotection neural regeneration
下载PDF
Tau in Alzheimer’s Disease:Pathological Alterations and an Attractive Therapeutic Target 被引量:2
11
作者 Jian-lan GU Fei LIU 《Current Medical Science》 SCIE CAS 2020年第6期1009-1021,共13页
Alzheimer’s disease(AD)is an age-related neurodegenerative disease with two major hallmarks:extracellular amyloid plaques made of amyloid-β(Aβ)and intracellular neurofibrillary tangles(NFTs)of abnormally hyperphosp... Alzheimer’s disease(AD)is an age-related neurodegenerative disease with two major hallmarks:extracellular amyloid plaques made of amyloid-β(Aβ)and intracellular neurofibrillary tangles(NFTs)of abnormally hyperphosphorylated tau.The number of NFTs correlates positively with the severity of dementia in AD patients.However,there is still no efficient therapy available for AD treatment and prevention so far.A deeper understanding of AD pathogenesis has identified novel strategies for the generation of specific therapies over the past few decades.Several studies have suggested that the prion-like seeding and spreading of tau pathology in the brain may be a key driver of AD.Tau protein is considered as a promising candidate target for the development of therapeutic interventions due to its considerable pathological role in a variety of neurodegenerative disorders.Abnormal tau hyperphosphorylation plays a detrimental pathological role,eventually leading to neurodegeneration.In the present review,we describe the recent research progresses in the pathological mechanisms of tau protein in AD and briefly discuss tau-based therapeutic strategies. 展开更多
关键词 Alzheimer’s disease tau protein HYPERPHOSPHORYLATION propagation of tau pathology
下载PDF
Phosphorylation of tau protein over time in rats subjected to transient brain ischemia 被引量:2
12
作者 Bo Song Qiang Ao +6 位作者 Zhen Wang Weiqiang Liu Ying Niu Qin Shen Huancong Zuo Xiufang Zhang Yandao Gong 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3173-3182,共10页
Transient brain ischemia has been shown to induce hyperphosphorylation of the micro- tubule-associated protein tau. To further determine the mechanisms underlying these processes, we investigated the interaction betwe... Transient brain ischemia has been shown to induce hyperphosphorylation of the micro- tubule-associated protein tau. To further determine the mechanisms underlying these processes, we investigated the interaction between tau, glycogen synthase kinase (GSK)-313 and protein phos- phatase 2A. The results confirmed that tau protein was dephosphorylated during brain ischemia; in addition, the activity of GSK-3β was increased and the activity of protein phosphatase 2A was de- creased. After reperfusion, tau protein was hyperphosphorylated, the activity of GSK-3β was de- creased and the activity of protein phosphatase 2A remained low. Importantly, the interaction of tau with GSK-3β and protein phosphatase 2A was altered during ischemia and reperfusion. Lithium chloride could affect tau phosphorylation by regulating the interaction of tau with GSK-3β and pro- tein phosphatase 2A, and improve learning and memory ability of rats after transient brain ischemia. The present study demonstrated that it was the interaction of tau with GSK-3β and protein phos- phatase 2A, rather than their individual activities, that dominates the phosphorylation of tau in tran- sient brain ischemia. Hyperphosphorylated tau protein may play an important role in the evolution of brain injury in ischemic stroke. The neuroprotective effects of lithium chloride partly depend on the inhibition of tau phosphorylation during transient brain ischemia. 展开更多
关键词 neural regeneration brain injury brain ischemia REPERFUSION microtubule-associated protein tau PHOSPHORYLATION glycogen synthase kinase 3[3 protein phosphatase 2A lithium chloride grants-supported paper NEUROREGENERATION
下载PDF
Role of Notoginsenoside Rg1 in Improving Spatial Cognitive Ability and Lowering Phosphorylation Level of Tau Protein in AD Model Rats 被引量:1
13
作者 Muzhe LI Wenhui WU +5 位作者 Zhiping WU Meiling REN Shuxian CHEN Xiaoling GUO Ping WANG Li LIN 《Medicinal Plant》 CAS 2018年第2期73-77,共5页
[Objectives] To study the effects and mechanism of notoginsenoside Rg1 on the spatial learning and memory and phosphorylated tau protein in the AD( Alzheimer's Disease) model rat. [Methods]The AD model rat was rep... [Objectives] To study the effects and mechanism of notoginsenoside Rg1 on the spatial learning and memory and phosphorylated tau protein in the AD( Alzheimer's Disease) model rat. [Methods]The AD model rat was replicated by injection of Aβ_(25-35) in the left lateral ventricles of SD rats. The low dose( 25 mg/kg),middle dose( 50 mg/kg) and high dose( 100 mg/kg) notoginsenoside Rg1 was used for intragastric administration,respectively,two times every day. After 4 weeks,the Morris water maze test was done to detect the learning and memory capacity,and the immunoblotting,immunohistochemical methods were used to detect the changes in the phosphorylation level and distribution of tau protein in hippocampus of the rats. [Results] After the intracerebroventricular injection of Aβ_(25-35),the learning and memory capacity of the model rats was significantly lower than the learning and memory capacity of the normal control rats. The immunoblotting test results showed that the phosphorylation level of tau protein threonine 231 site( Thr231) in hippocampus was significantly increased,and the nonphosphorylation level was significantly decreased. The morphological testing results showed that the phosphorylation level of tau protein Thr231 of AD model rats was increased markedly in region of DG,CA1 and CA3 of the hippocampus. The intervention of the middle dose notoginsenoside Rg1 could significantly improve the learning and memory capacity of the model rats in Morris water maze. The notoginsenoside Rg1 in three different doses could all reduce the phosphorylation level of tau protein Thr231 in the hippocampal DG,CA1,CA3 regions,and there were no significant differences among the three doses. [Conclusions]The notoginsenoside Rg1 could improve Aβ_(25-35)-induced spatial learning and memory impairment of the AD model rats,and decreased the phosphorylation level of tau protein in hippocampus. 展开更多
关键词 Notoginsenoside Rg1 Alzheimer’s disease Learning and memory Phosphorylated tau protein
下载PDF
Tau protein,phosphorylated tau protein,and beta-amyloid 42 levels in patients with neurodegenerative diseases complicated by cognitive deficits A non-randomized,concurrent,case-control investigation
14
作者 Radomír Talb Jií Masopust +3 位作者 Ctirad Andrys Pavel touraè Jakub Hort Martin Vali 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第11期951-957,共7页
BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers... BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers for diagnosing various neurodegenerative disorders. OBJECTIVE: To assess the feasibility of tau-protein, phosphorylated tau-protein, beta-amyloid 42 (Aβ42), and 14-3-3 protein as biomarkers for diagnosing several neurodegenerative diseases complicated by cognitive deficits. DESIGN, TIME AND SETTING: A non-randomized, concurrent, case-control investigation was performed in three medical centers in the Czech Republic (Department of Neurology at the University Hospital in Hradec Kralove, Department of Neurology at the 2rd Medical Faculty, and the University Hospital Motol) between October 2000 and November 2006. PARTICIPANTS: Eighteen patients with probable AIzheimer's disease, 4 patients with Creutzfeldt-Jakob disease, 10 patients with frontotemporal dementia, 9 patients with clinically isolated syndrome suggestive of multiple sclerosis, and 7 patients with multiple sclerosis, as well as 38 race-, nationality-, and age-matched cognitively intact controls, were included in the study. Diagnoses were established based on the following criteria: the criteria for Alzheimer's disease proposed by the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association, WHO criteria for Creutzfeldt-Jakob disease, Neary criteria for frontotemporal dementia, and McDonald's criteria for multiple sclerosis. All included patients were confirmed to suffer from various degrees of dementia. METHODS: Enzyme-linked immunosorbent assay was used to measure concentrations of tau-protein, phosphorylated tau-protein, and Aβ42 in cerebrospinal fluid (CSF) samples collected by standard lumbar puncture from each patient. Moreover, 14-3-3 protein was assessed by Western blot in CSF of Creutzfeldt-Jakob disease patients. Cognitive status was assessed using the Mini Mental Scale Examination (MMSE) in all subjects. MAIN OUTCOME MEASURES: Establishment of biomarkers with greatest specificity and sensitivity for the investigated disorders according to Receiver Operating Characteristic curves, which were based on values from patients and controls; correlation between concentrations of given biomarkers and demographic parameters, diagnosis, duration of disease, and level of cognitive deficit. RESULTS: Increased concentrations of total tau protein and phosphorylated tau protein, and decreased levels of Aβ42, in CSF of Alzheimer's disease patients reached the required sensitivity/specificity ratio of 80% or greater. A marked elevation in CSF concentrations of total tau protein showed even greater sensitivity than 14-3-3 protein in Creutzfeldt-Jakob disease. There was no association between selected biomarkers and frontotemporal dementia or multiple sclerosis. Phosphorylated tau-protein was the only biomarker that noticeably correlated with MMSE scores for Alzheimer's disease.CONCLUSION: Levels of total tau protein, phosphorylated tau protein, and A!342 in the CSF could differentiate patients with Alzheimer's disease and Creutzfeldt-Jakob disease from healthy controls and patients with other neurodegenerative disorders. The diversity of absolute values demonstrates the necessity to establish a specific standard for each laboratory. 展开更多
关键词 Alzheimer's disease Creutzfeldt-Jakob disease multiple sclerosis beta-amyloid 42 total tau protein phosphorylated tau protein
下载PDF
Meta-analysis of tau genetic polymorphism and sporadic progressive supranuclear palsy susceptibility
15
作者 Hai Yuan Xiuyan Yang +3 位作者 Hanlin Kang Ying Cheng Huiming Ren Xiaotong Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第5期353-359,共7页
OBJECTIVE: To quantitatively evaluate the association between tau genetic polymorphism (H1 and H2) and susceptibility to sporadic progressive supranuclear palsy (PSP). DATA SOURCES: Relevant Medical Subject Head... OBJECTIVE: To quantitatively evaluate the association between tau genetic polymorphism (H1 and H2) and susceptibility to sporadic progressive supranuclear palsy (PSP). DATA SOURCES: Relevant Medical Subject Heading terms and text words were used to identify articles from MEDLINE (1966/2010-07), EMBASE (1984/2010-07), and Chinese National Knowledge Infrastructure (1979/2010), as well as references of the retrieved articles. STUDY SELECTION: The selected articles met the following criteria: sporadic PSP case group and healthy control group, as well as genotype frequency (H1/H1 and H1/H2 + H2/H2) in cases and controls. Genotype distribution in the control groups was tested using the Hardy-Weinberg Equilibrium (HWE). Articles irrelevant to HWE were excluded, and a forest plot was performed to combine all selected articles with Review Manager (Version 5.0). MAIN OUTCOME MEASURES: The summary odds ratios arid corresponding 95% confidence intervals (95%CI) for tau polymorphism (H1/H1 and H1/H2 + H2/H2) between sporadic PSP case and healthy control groups were estimated using the fixed effects model to assess whether tau genetic polymorphism is associated with sporadic PSP susceptibility. RESULTS: According to inclusion and exclusion criteria, a total of 16 articles, which included 1 337 sporadic PSP cases and 2 073 controls, were used in the study. Two articles were excluded because of deviation from HWE in the control groups. The combined result, based on all studies, showed a significant difference in genotype distribution between cases and controls: H1H1 vs. H1H2 + H2H2 (odds ratio (OR) = 4.98, 95%C1: 3.97-6.23, P 〈 0.01). Stratifying for geographic distribution of PSP, sporadic PSP cases exhibited a significantly higher frequency of H1H1 genotypes than controls in the United States (OR = 4.07, 95%C/: 3.16-5.25, P 〈 0.01) and Europe (OR = 8.60, 95%C1: 5.05-14.64, P〈 0.01). CONCLUSION: Tau genetic polymorphism is associated with sporadic PSP susceptibility, and geographic distribution might play a role in tau genetic polymorphism and sporadic PSP susceptibility. 展开更多
关键词 genes META-ANALYSIS microtubule-associated protein tau POLYMORPHISM progressive supranuclear palsy
下载PDF
Mesenchymal stem cell-and extracellular vesicle-based therapies for Alzheimer's disease:progress,advantages,and challenges 被引量:1
16
作者 Renata Guedes de Jesus Gonçalves Juliana Ferreira Vasques +2 位作者 Almir Jordão da Silva-Junior Fernanda Gubert Rosalia Mendez-Otero 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1645-1651,共7页
Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For de... Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For decades, the search for disease-modifying therapies has focused on the two main Alzheimer's disease histopathological hallmarks, seeking to prevent, mitigate, or clear the formation of extracellular aggregates of β-amyloid peptide and intracellular neurofibrillary tangles of tau protein, although without clinical success. Mesenchymal stem cell-based therapy has emerged as a promising alternative for the treatment of Alzheimer's disease, especially because it also targets other crucial players in the pathogenesis of the disease, such as neuroinflammation, synaptic dysfunction/loss, oxidative stress, and impaired neurogenesis. Herein, we review current knowledge of the therapeutic potential of mesenchymal stem cells and their extracellular vesicles for Alzheimer's disease, discussing the most recent findings in both preclinical and clinical trials as well as how advanced technologies have helped to overcome some limitations and contributed to stimulate the development of more effective treatments. 展开更多
关键词 Alzheimer's disease amyloid-β cell therapy cell transplantation exosomes extracellular vesicles mesenchymal stem cell micro vesicles NEUROINFLAMMATION tau protein
下载PDF
Lamotrigine protects against cognitive deficits,synapse and nerve cell damage,and hallmark neuropathologies in a mouse model of Alzheimer’s disease 被引量:1
17
作者 Xin-Xin Fu Rui Duan +7 位作者 Si-Yu Wang Qiao-Quan Zhang Bin Wei Ting Huang Peng-Yu Gong Yan E Teng Jiang Ying-Dong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期189-193,共5页
Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular me... Lamotrigine(LTG)is a widely used drug for the treatment of epilepsy.Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer’s disease.However,the underlying molecular mechanisms remain unclear.In this study,amyloid precursor protein/presenilin 1(APP/PS1)double transgenic mice were used as a model of Alzheimer’s disease.Five-month-old APP/PS1 mice were intragastrically administered 30 mg/kg LTG or vehicle once per day for 3 successive months.The cognitive functions of animals were assessed using Morris water maze.Hyperphosphorylated tau and markers of synapse and glial cells were detected by western blot assay.The cell damage in the brain was investigated using hematoxylin and eosin staining.The levels of amyloid-βand the concentrations of interleukin-1β,interleukin-6 and tumor necrosis factor-αin the brain were measured using enzyme-linked immunosorbent assay.Differentially expressed genes in the brain after LTG treatment were analyzed by high-throughput RNA sequencing and real-time polymerase chain reaction.We found that LTG substantially improved spatial cognitive deficits of APP/PS1 mice;alleviated damage to synapses and nerve cells in the brain;and reduced amyloid-βlevels,tau protein hyperphosphorylation,and inflammatory responses.High-throughput RNA sequencing revealed that the beneficial effects of LTG on Alzheimer’s disease-related neuropathologies may have been mediated by the regulation of Ptgds,Cd74,Map3k1,Fosb,and Spp1 expression in the brain.These findings revealed potential molecular mechanisms by which LTG treatment improved Alzheimer’s disease.Furthermore,these data indicate that LTG may be a promising therapeutic drug for Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease Alzheimer’s disease-related neuropathologies amyloid-βpathology APP/PS1 mice cognitive deficits damage of synapses and nerve cells high-throughput RNA sequencing LAMOTRIGINE neuroinflammation tau protein hyperphosphorylation
下载PDF
Death-associated protein kinase 1 is associated with cognitive dysfunction in major depressive disorder
18
作者 Xiao-Hui Li Hong-Can Zhu +5 位作者 Xue-Min Cui Wang Wang Lin Yang Li-Bo Wang Neng-Wei Hu Dong-Xiao Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1795-1801,共7页
We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's d... We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder. 展开更多
关键词 Alzheimer's disease antidepressant drug behavioral tests cognitive dysfunction death-associated protein kinase 1 EXERCISE HIPPOCAMPUS major depressive disorder PHOSPHORYLATION tau protein
下载PDF
Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury 被引量:5
19
作者 Bo Song Qiang Ao +4 位作者 Ying Niu Qin Shen Huancong Zuo Xiufang Zhang Yandao Gong 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第26期2449-2457,共9页
Amyloid 13-peptide, a major component of senile plaques in Alzheimer's disease, has been implicated in neuronal cell death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral isch... Amyloid 13-peptide, a major component of senile plaques in Alzheimer's disease, has been implicated in neuronal cell death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer's disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries; meanwhile, fibrillar amyloid [3-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid 13-peptide could further aggravate impairments to learning and memory and neuronal cell death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 313 were significantly stronger in cerebral ischemia-reperfusion injury rats subjected to amyloid [3-peptide administration than those undergo- ing cerebral ischemia-repetfusion or amyloid 13-peptide administration alone. Conversely, the activ- ity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury following amyloid 13-peptide administration. These findings suggest that amyloid 13-peptide can potentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cognitive impairment. 展开更多
关键词 neural regeneration brain injury cerebral ischemia-reperfusion Alzheimer's disease amyloid 13-peptides tau proteins glycogen synthase kinase 313 protein phosphatase 2A PHOSPHORYLATION grants-supported paper NEUROREGENERATION
下载PDF
How non-rapid eye movement sleep and Alzheimer pathology are linked 被引量:1
20
作者 Annelies Falter Maarten J A Van Den Bossche 《World Journal of Psychiatry》 SCIE 2021年第11期1027-1038,共12页
Alzheimer's disease(AD)is a multifactorial neurodegenerative disorder characterized by the presence of senile plaques and neurofibrillary tangles.Research attempts to identify characteristic factors that are assoc... Alzheimer's disease(AD)is a multifactorial neurodegenerative disorder characterized by the presence of senile plaques and neurofibrillary tangles.Research attempts to identify characteristic factors that are associated with the presence of the AD pathology on the one hand and that increase the risk of developing AD on the other.Changes in non-rapid eye movement(NREM)sleep may meet both requirements for various reasons.First,NREM-sleep is important for optimal memory function.In addition,studies report that the presence of AD pathology is associated with NREM-sleep changes.Finally,more and more results appear to suggest that sleep problems are not only a symptom of AD but can also increase the risk of AD.Several of these studies suggest that it is primarily a lack of NREM-sleep that is responsible for this increased risk.However,the majority investigated sleep only through subjective reporting,as a result of which NREMsleep could not be analyzed separately.The aim of this literature study is therefore to present the results of the studies that relate the AD pathology and NREM-sleep(registered by electroencephalography).Furthermore,we try to evaluate whether NREM-sleep analysis could be used to support the diagnosis of AD and whether NREM-sleep deficiency could be a causal factor in the development of AD. 展开更多
关键词 Alzheimer’s disease Mild cognitive impairment SLEEP Non-rapid eye movement sleep Amyloid beta-peptides tau proteins ELECTROENCEPHALOGRAPHY
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部