Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current met...Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media展开更多
Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as pre...Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.展开更多
Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the a...Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the atmospheric NO, concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved approaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the surface layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that are suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.展开更多
By using dropped stress creep method a new testing technique for measurement of the fa-tigue-creep interaction resistance is developed. At varied adjusted mean stresses the creep testingwas performed repeatedly When a...By using dropped stress creep method a new testing technique for measurement of the fa-tigue-creep interaction resistance is developed. At varied adjusted mean stresses the creep testingwas performed repeatedly When an unlimited extensive incubation period with zero creep rate oc-curred. the stress cavsing zero creep rate is defined as fatigue-creep resistance. The developped test-ing technique was used to measure the fatigue-creep resistance in F anc C regions. The dynamic ef-fective stress could yield a better descrption of fatigue and creep interaction. The fatigue-creep rateequations with varied exponents inF of C region are established. The different deformation mecha-nisms in F or C regions are indicated展开更多
A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and sing...A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.展开更多
The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively ...The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum,actinium,and their daughter nuclei.This limits its applications in low-counting rate experiments.In this study,we identified the radioactive isotopes in theφ3"x 3"Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system.Moreover,we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components.The total activity of the background radiation of B380 is determined to be 1.523(34)Bq/cm^3.The main sources include 138La at 1.428(34)Bq/cm^3,207Tl at 0.0135(13)Bq/cm^3,211Bi at 0.0136(15)Bq/cm^3,215Po at 0.0135(3)Bq/cm^3,219Rn at 0.0125(12)Bq/cm^3,223Fr at 0.0019(11)Bq/cm^3,223Ra at 0.0127(10)Bq/cm^3,227Th at 0.0158(22)Bq/cm^3,and 227Ac at 0.0135(13)Bq/cm^3.Of these,the activities of 207Tl,211Po,215Po,223Fr,and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.展开更多
Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error...Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.展开更多
The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of p...The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of planar flow velocity fields, planar pressure distribution, model location and deformation, model temperature and quantitative high speed flow visualization. The applications as carried out by DLR range from low speed flows to transonic flows, from high lift configurations to propellers and rotors, from wake vortex investigations in catapult facilities and water towing tanks to investigations of vortex break down phenomena on delta wings. The capability to use image based measurement techniques in transonic flows requires dedicated technical developments and experienced scientists due to the special environment of a transonic wind tunnel. In this paper an overview of the state-of-the art of the application of image based measurement techniques in transonic flows as performed by DLR's Institute of Aerodynamics and Flow Technology will be given.展开更多
Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer...Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer. We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study. Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera. We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.展开更多
In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux densi...In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.展开更多
A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted....A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted. The tests show that the ignitor and the main charge of the microthruster match well, the dynamic and static capability of the test and measurement meets the test requirement and the result is creditable. The measured technical characteristics of the microthruster are that the ignition delay time is shorter than 0 3?ms, the total impulse is over 3?N·s, the operational time is shorter than 16?ms and the mass ratio of the thruster is 0 216.展开更多
Based on Raman-shifted wavelengths of D2 and CHr pumped by third harmonic of Nd:YAG laser, a differential absorption lidar was presented in this paper and had been constructed for probing environmental NO2 concentrati...Based on Raman-shifted wavelengths of D2 and CHr pumped by third harmonic of Nd:YAG laser, a differential absorption lidar was presented in this paper and had been constructed for probing environmental NO2 concentration. NO2 experimental measurements were carried out at Anhui Institute of Optics and Fine Mechanics in Hefei. Some NO2 measurement results were given and discussed.展开更多
Inductance-bared electromagnetic tomography (EMT) is a novel industrial process tomographic technique. Exact expressions of the magnetic field distribution in a two-dimensional object space were derived by analyticall...Inductance-bared electromagnetic tomography (EMT) is a novel industrial process tomographic technique. Exact expressions of the magnetic field distribution in a two-dimensional object space were derived by analytically solving the forward problem for a particular two-component pow. The physical mechanisms within the sensor and the detectability limits of the EMT technique were quantitatively analyzed. Direct mathematical expressions for the field sensitivity and the sensitivity maps were established. To a certain extent, mathematical and theoretical bares are given for quantitative design of the sensor, detectability analysis of the EMT technique and image reconstruction of two-component processes based on the linear back-projection algorithm.展开更多
The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface te...The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.展开更多
The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been appl...The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been applied in measuring velocity of the blown sand particles. This paper reviews the measurement results of several commonly used methods: photoelectric cell method, high-speed photographic method, Particle Dynamics Analyzer (PDA) method and Particle Image Velocimetry (PIV) method. Photoelectric cell method, high-speed photograph method and PDA method are useful in studying the velocity distribution of particles. PIV is a whole-flow-field technique and a useful tool to study the average velocity field in a target area. These methods got some similar results but considerable differences also exist. They have come to similar conclusions on the velocity distributions at a single height but direct measurement results with respect to the velocity distribution very close to the surface are still scarce except some PDA results. The magnitude of measured mean particle velocity differs greatly. The relationship obtained by different methods between mean particle velocity and wind velocity, particle size and possibly other influencing factors also differs considerably. Although several authors have proposed similar power functions to describe the variation with height of the mean particle velocity, the predicted results have wide differences. Each technique is based on some unique principles, and has its advantages and disad- vantages. To make full use of different techniques, a lot of work needs be done to validate them. Developing a reliable technique to measure the velocity of blown particles is still a necessary task in aeolian research.展开更多
A novel gain measurement technique based on the integration of the measured amplified spontaneous emission spectrum multiplying a phase function over one longitudinal mode interval is proposed for Fabry-Perot semicond...A novel gain measurement technique based on the integration of the measured amplified spontaneous emission spectrum multiplying a phase function over one longitudinal mode interval is proposed for Fabry-Perot semiconductor lasers.展开更多
To optimize the design and improve the performance of wastewater treatment bioreactors,the review concerning the hydrodynamics explored by theoretical equations,process experiments,modeling of the hydrodynamics and fl...To optimize the design and improve the performance of wastewater treatment bioreactors,the review concerning the hydrodynamics explored by theoretical equations,process experiments,modeling of the hydrodynamics and flow field measurement is presented. Results of different kinds of experiments show that the hydrodynamic characteristics can affect sludge characteristics,mass transfer and reactor performance significantly. Along with the development of theoretical equations,turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numerical simulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrodynamics very well.展开更多
On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system...On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system is built of some commercially available components and instruments based on virtual instrument technology. The system is integrated with stroboscopic imaging, computer micro-vision, microscopic Mirau phase shifting interferometry, and laser Doppler vibrometer, and is used for the measurement of full-view in-plane and out-of-plane geometric parameters and periodical motions and single spot out-of-plane transient motion. The system configuration and measurement methods are analyzed, and some applications of the measurement of in-plane and out-of-plane dimensions and motions were described. The measurement accuracy of in-plane dimensions and out-of-plane dimensional is better than 0.2 um and 5 nm respectively. The resolution of measuring in-plane and out-of-plane motions is better than 15 nm and 2 nm respectively.展开更多
Differential reflectance spectroscopy(DRS)is a powerful tool to study processes during thin-film growth,especially that of transition metal dichalcogenides and organic thin films.To satisfy the requirements for in sit...Differential reflectance spectroscopy(DRS)is a powerful tool to study processes during thin-film growth,especially that of transition metal dichalcogenides and organic thin films.To satisfy the requirements for in situ and real-time monitoring of film growth,including spectral resolution and sensitivity at the level of monolayers and even sub-monolayers,the most challenging technical task in DRS is to reduce noise to an extremely low level so that the best possible signal-to-noise ratio can be achieved.In this paper,we present a simplified and cost-effective DRS apparatus,with which we show that the measurement noise is mainly composed of thermal drift noise and explore the temperature-dependence of the DRS signal.Based on the results obtained,we propose an easily realized and effective scheme aiming to reduce the noise.Experimental results demonstrate that this scheme is effective in stabilizing reliable signals for a long period of several hours.Significant noise reduction is achieved,with the typical average noise of the DRS system being decreased to 0.05%over several hours.The improved DRS system is applied to study the growth of an organic semiconductor layer for an organic field-effect transistor device.The results indicate that the apparatus proposed in this paper has potential applications in fabrication of devices on the nanoscale and even the sub-nanoscale.展开更多
In this paper,it is shown that the differential reflectivity Z_(DR) is related to drop size distribution(DSD)and the spectral shape variation of different truncated diameters.Z_(DR) is a sensitive function to variatio...In this paper,it is shown that the differential reflectivity Z_(DR) is related to drop size distribution(DSD)and the spectral shape variation of different truncated diameters.Z_(DR) is a sensitive function to variation of DSD of the spectra.The effects of shape variation of DSD on rainfall can be deduced with a(Z_H,Z_(DR))dual-parameter technique,which is effective to improve the accuracy of rainfall measurement and is of the priority of identifying large particles of hydrometeors(especially hailstone)from the rain region.展开更多
文摘Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media
文摘Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.
文摘Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the atmospheric NO, concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved approaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the surface layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that are suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.
文摘By using dropped stress creep method a new testing technique for measurement of the fa-tigue-creep interaction resistance is developed. At varied adjusted mean stresses the creep testingwas performed repeatedly When an unlimited extensive incubation period with zero creep rate oc-curred. the stress cavsing zero creep rate is defined as fatigue-creep resistance. The developped test-ing technique was used to measure the fatigue-creep resistance in F anc C regions. The dynamic ef-fective stress could yield a better descrption of fatigue and creep interaction. The fatigue-creep rateequations with varied exponents inF of C region are established. The different deformation mecha-nisms in F or C regions are indicated
文摘A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.
基金This work was supported by the National Key R&D program of China(No.2016YFA0400504)by the National Natural Science Foundation of China(Nos.U1832211,U1867210,11922501,11961141004,11575018,11790322,and U1932209).
文摘The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum,actinium,and their daughter nuclei.This limits its applications in low-counting rate experiments.In this study,we identified the radioactive isotopes in theφ3"x 3"Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system.Moreover,we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components.The total activity of the background radiation of B380 is determined to be 1.523(34)Bq/cm^3.The main sources include 138La at 1.428(34)Bq/cm^3,207Tl at 0.0135(13)Bq/cm^3,211Bi at 0.0136(15)Bq/cm^3,215Po at 0.0135(3)Bq/cm^3,219Rn at 0.0125(12)Bq/cm^3,223Fr at 0.0019(11)Bq/cm^3,223Ra at 0.0127(10)Bq/cm^3,227Th at 0.0158(22)Bq/cm^3,and 227Ac at 0.0135(13)Bq/cm^3.Of these,the activities of 207Tl,211Po,215Po,223Fr,and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.
文摘Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.
文摘The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of planar flow velocity fields, planar pressure distribution, model location and deformation, model temperature and quantitative high speed flow visualization. The applications as carried out by DLR range from low speed flows to transonic flows, from high lift configurations to propellers and rotors, from wake vortex investigations in catapult facilities and water towing tanks to investigations of vortex break down phenomena on delta wings. The capability to use image based measurement techniques in transonic flows requires dedicated technical developments and experienced scientists due to the special environment of a transonic wind tunnel. In this paper an overview of the state-of-the art of the application of image based measurement techniques in transonic flows as performed by DLR's Institute of Aerodynamics and Flow Technology will be given.
文摘Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer. We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study. Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera. We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.
文摘In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.
文摘A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted. The tests show that the ignitor and the main charge of the microthruster match well, the dynamic and static capability of the test and measurement meets the test requirement and the result is creditable. The measured technical characteristics of the microthruster are that the ignition delay time is shorter than 0 3?ms, the total impulse is over 3?N·s, the operational time is shorter than 16?ms and the mass ratio of the thruster is 0 216.
基金This work was supported by the National 863 High Technology Research and Development Projects,S,
文摘Based on Raman-shifted wavelengths of D2 and CHr pumped by third harmonic of Nd:YAG laser, a differential absorption lidar was presented in this paper and had been constructed for probing environmental NO2 concentration. NO2 experimental measurements were carried out at Anhui Institute of Optics and Fine Mechanics in Hefei. Some NO2 measurement results were given and discussed.
文摘Inductance-bared electromagnetic tomography (EMT) is a novel industrial process tomographic technique. Exact expressions of the magnetic field distribution in a two-dimensional object space were derived by analytically solving the forward problem for a particular two-component pow. The physical mechanisms within the sensor and the detectability limits of the EMT technique were quantitatively analyzed. Direct mathematical expressions for the field sensitivity and the sensitivity maps were established. To a certain extent, mathematical and theoretical bares are given for quantitative design of the sensor, detectability analysis of the EMT technique and image reconstruction of two-component processes based on the linear back-projection algorithm.
基金the National Natural Science Foundation of China(No.31101085)the Scientific Research and Development Foundation for Start-up Projects of Zhejiang Agriculture and Forestry University (No.2034020044)
文摘The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.
基金the funding from National Science Fund for Distinguished Young Scholars of the NaturalScience Foundation of China (40225003)the Knowledge Innovation Project of the Chinese Academy of Science(KZCX3-SW-341)
文摘The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been applied in measuring velocity of the blown sand particles. This paper reviews the measurement results of several commonly used methods: photoelectric cell method, high-speed photographic method, Particle Dynamics Analyzer (PDA) method and Particle Image Velocimetry (PIV) method. Photoelectric cell method, high-speed photograph method and PDA method are useful in studying the velocity distribution of particles. PIV is a whole-flow-field technique and a useful tool to study the average velocity field in a target area. These methods got some similar results but considerable differences also exist. They have come to similar conclusions on the velocity distributions at a single height but direct measurement results with respect to the velocity distribution very close to the surface are still scarce except some PDA results. The magnitude of measured mean particle velocity differs greatly. The relationship obtained by different methods between mean particle velocity and wind velocity, particle size and possibly other influencing factors also differs considerably. Although several authors have proposed similar power functions to describe the variation with height of the mean particle velocity, the predicted results have wide differences. Each technique is based on some unique principles, and has its advantages and disad- vantages. To make full use of different techniques, a lot of work needs be done to validate them. Developing a reliable technique to measure the velocity of blown particles is still a necessary task in aeolian research.
基金This work was supported by the National Nature Science Foundation of China under grants No. 60225011major state basic research program under grant No. G2000036606.
文摘A novel gain measurement technique based on the integration of the measured amplified spontaneous emission spectrum multiplying a phase function over one longitudinal mode interval is proposed for Fabry-Perot semiconductor lasers.
基金Sponsored by the National Basic Research Program of China( 973 Program)(Grant No.G2000026402)
文摘To optimize the design and improve the performance of wastewater treatment bioreactors,the review concerning the hydrodynamics explored by theoretical equations,process experiments,modeling of the hydrodynamics and flow field measurement is presented. Results of different kinds of experiments show that the hydrodynamic characteristics can affect sludge characteristics,mass transfer and reactor performance significantly. Along with the development of theoretical equations,turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numerical simulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrodynamics very well.
基金Supported by National Natural Science Foundation of China (No.50505031)Tianjin Municipal Science and Technology Commission(No.043185911)Programfor NewCentury Excellent Talents in University
文摘On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system is built of some commercially available components and instruments based on virtual instrument technology. The system is integrated with stroboscopic imaging, computer micro-vision, microscopic Mirau phase shifting interferometry, and laser Doppler vibrometer, and is used for the measurement of full-view in-plane and out-of-plane geometric parameters and periodical motions and single spot out-of-plane transient motion. The system configuration and measurement methods are analyzed, and some applications of the measurement of in-plane and out-of-plane dimensions and motions were described. The measurement accuracy of in-plane dimensions and out-of-plane dimensional is better than 0.2 um and 5 nm respectively. The resolution of measuring in-plane and out-of-plane motions is better than 15 nm and 2 nm respectively.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2017YFF0107003).
文摘Differential reflectance spectroscopy(DRS)is a powerful tool to study processes during thin-film growth,especially that of transition metal dichalcogenides and organic thin films.To satisfy the requirements for in situ and real-time monitoring of film growth,including spectral resolution and sensitivity at the level of monolayers and even sub-monolayers,the most challenging technical task in DRS is to reduce noise to an extremely low level so that the best possible signal-to-noise ratio can be achieved.In this paper,we present a simplified and cost-effective DRS apparatus,with which we show that the measurement noise is mainly composed of thermal drift noise and explore the temperature-dependence of the DRS signal.Based on the results obtained,we propose an easily realized and effective scheme aiming to reduce the noise.Experimental results demonstrate that this scheme is effective in stabilizing reliable signals for a long period of several hours.Significant noise reduction is achieved,with the typical average noise of the DRS system being decreased to 0.05%over several hours.The improved DRS system is applied to study the growth of an organic semiconductor layer for an organic field-effect transistor device.The results indicate that the apparatus proposed in this paper has potential applications in fabrication of devices on the nanoscale and even the sub-nanoscale.
基金National Disaster Reduction Foundation(96-020-01-07)of China,KZ 951-B1-405 Western Brilliance of the Chinese Academy of Sciences.
文摘In this paper,it is shown that the differential reflectivity Z_(DR) is related to drop size distribution(DSD)and the spectral shape variation of different truncated diameters.Z_(DR) is a sensitive function to variation of DSD of the spectra.The effects of shape variation of DSD on rainfall can be deduced with a(Z_H,Z_(DR))dual-parameter technique,which is effective to improve the accuracy of rainfall measurement and is of the priority of identifying large particles of hydrometeors(especially hailstone)from the rain region.