期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Temperature-Induced Unfolding Pathway of Staphylococcal Enterotoxin B:Insights from Circular Dichroism and Molecular Dynamics Simulation
1
作者 LIU Ji ZHANG Shiyu +1 位作者 ZENG Yu DENG Yi 《食品科学》 EI CAS CSCD 北大核心 2024年第18期55-76,共22页
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re... In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes. 展开更多
关键词 staphylococcal enterotoxin B circular dichroism molecular dynamics simulations temperature-induced unfolding
下载PDF
Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer 被引量:1
2
作者 李丽君 宫顺顺 +5 位作者 刘仪琳 徐琳 李文宪 马茜 丁小哲 郭晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期414-419,共6页
The temperature-induced complex refractive index(CRI) effect of graphene is demonstrated theoretically and experimentally based on a graphene coated in-fiber MZI(Mach-Zehnder interferometer). The relationships bet... The temperature-induced complex refractive index(CRI) effect of graphene is demonstrated theoretically and experimentally based on a graphene coated in-fiber MZI(Mach-Zehnder interferometer). The relationships between real and imaginary parts of the graphene CRI and temperature are obtained through investigating the dip wavelength and intensity of the MZI interference spectrum changing with temperature, respectively. The temperature effect of CRI of the graphene is also analyzed theoretically. Both experimental and theoretical studies show that the real part and imaginary part of the CRI nonlinearly decrease and increase with temperature increasing, respectively. This graphene-coated in-fiber MZI structure also possesses the advantages of easy fabrication, miniaturization, low cost and robustness. It has potential applications in nanomaterial-based optic devices for communication and sensing. 展开更多
关键词 in-fiber Mach-Zehnder interferometer graphene temperature-induced complex refractive index
下载PDF
Temperature-induced phase transition of two-dimensional semiconductor GaTe
3
作者 Xiaoyu Wang Xue Wang +3 位作者 Hongshuai Zou Yuhao Fu Xin He Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期428-433,共6页
GaTe is a two-dimensional Ⅲ-Ⅵ semiconductor with suitable direct bandgap of~1.65 eV and high photoresponsivity,which makes it a promising candidate for optoelectronic applications.GaTe exists in two crystalline phas... GaTe is a two-dimensional Ⅲ-Ⅵ semiconductor with suitable direct bandgap of~1.65 eV and high photoresponsivity,which makes it a promising candidate for optoelectronic applications.GaTe exists in two crystalline phases:monoclinic(m-GaTe,with space group C2/m) and hexagonal(h-GaTe,with space group P63/mmc).The phase transition between the two phases was reported under temperature-varying conditions,such as annealing,laser irradiation,etc.The explicit phase transition temperature and energy barrier during the temperature-induced phase transition have not been explored.In this work,we present a comprehensive study of the phase transition process by using first-principles energetic and phonon calculations within the quasi-harmonic approximation framework.We predicted that the phase transition from h-GaTe to m-GaTe occurs at the temperature decreasing to 261 K.This is in qualitative agreement with the experimental observations.It is a two-step transition process with energy barriers 199 meV and 288 meV,respectively.The relatively high energy barriers demonstrate the irreversible nature of the phase transition.The electronic and phonon properties of the two phases were further investigated by comparison with available experimental and theoretical results.Our results provide insightful understanding on the process of temperature-induced phase transition of GaTe. 展开更多
关键词 two-dimensional semiconductor GaTe temperature-induced phase transition first-principles calculation quasi-harmonic approximation
下载PDF
Changes of carbohydrate and protein metabolism in seedling leaves of a temperature-induced greenable albino mutant line W25 of rice
4
作者 WU Dianxing SHU Qingyao XIA Yingwu Inst of Nuclear Agri Sci,Zhejiang Agri Univ,Hangzhou 310029,China 《Chinese Rice Research Newsletter》 1998年第4期5-5,共1页
W25 is a low-temperature-sensitive albino mu-tant line. Temperature not only controls thealbino phenotype expression of W25, but alsodetermines whether it could survive. When thetemperature is lower than 25℃, the lea... W25 is a low-temperature-sensitive albino mu-tant line. Temperature not only controls thealbino phenotype expression of W25, but alsodetermines whether it could survive. When thetemperature is lower than 25℃, the leaves ofW25 shows complete albino, but they exhibitsnormal green when temperature is higher than30℃. Meanwhile, at 25℃, it can be greenable 展开更多
关键词 line THAN Changes of carbohydrate and protein metabolism in seedling leaves of a temperature-induced greenable albino mutant line W25 of rice
下载PDF
Temperature-induced Molecular Chain Motions of Styrenic Triblock Copolymers Studied by Intrinsic Fluorescence Spectra
5
作者 袁中科 杨大成 范莉 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第10期2169-2174,共6页
The temperature-induced molecular chain motions of styrenic triblock copolymers (SBC), i.e. polysty- rene-block-polybutadiene-block-polystyrene (SBS) and polystyrene-block-poly(ethylene-co-l-butene)-block-poly- ... The temperature-induced molecular chain motions of styrenic triblock copolymers (SBC), i.e. polysty- rene-block-polybutadiene-block-polystyrene (SBS) and polystyrene-block-poly(ethylene-co-l-butene)-block-poly- styrene (SEBS), were studied by intrinsic fluorescence method. For SBS, the glass transition temperatures (Tgs) of B block and S block obtained by intrinsic fluorescence method were in good agreement with differential scanning calorimetry measurements (DSC). In the case of SEBS, an isoemission point was observed at about 310 nm at ele- vated temperatures, suggesting the slight conversion between the monomer and excimer emission. On this basis, the molecular chain motion of SEBS was monitored by both fluorescence intensity and excimer/monomer fluorescence ratio. Besides the Tgs of S block and EB blocks, a melting point (Tin) of weak crystalline in EB block was unambiguously determined by intrinsic fluorescence. Furthermore, it was found that the melting process directly led to the slight loosening of PS segments in interface and consequently the reduction of the amount of excimer. A reasonable mechanism was proposed to describe the molecular chain movements and phase transitions of SEBS upon heating. Moreover, the influence of temperature on the apparent activation energy of non-radiative process ( E^T ) around Tg of S block was much stronger than that around Tg of B or EB blocks. 展开更多
关键词 temperature-induced molecular chain motions styrenic block copolymers (SBS) SEBS fluorescence
原文传递
Pyroelectric spectrum in Pb(Zr,Sn,Ti)O3 antiferroelectric- ferroelectric ceramics 被引量:2
6
作者 Feng, YJ Xu, Z +1 位作者 Yang, TQ Yao, X 《Chinese Science Bulletin》 SCIE EI CAS 2000年第13期1169-1172,共4页
The pyroelectric effect of phase transition induced with temperature in Nb-modified Pb(Zr,Sn,Ti)O3 antiferroelectric-ferroelectric ceramics is studied. Experimental results reveal that the phase transitions are accomp... The pyroelectric effect of phase transition induced with temperature in Nb-modified Pb(Zr,Sn,Ti)O3 antiferroelectric-ferroelectric ceramics is studied. Experimental results reveal that the phase transitions are accompanied with marked pyroelectric peaks, there exists the close relation between the type of phase transition and the shape of pyroelectric peak. Because of the variations of phase transition, various pyroelectric spectra result. The pyroelectric spectrum can display the polarization effect and some inferior phase transitions with temperature variations, such as antiferroelectric AFEA-AFEB or ferroelectric FEL-FEH transition, which are not detected by the conventional dielectric measurement. 展开更多
关键词 Pb(Zr SN Ti)O3 ceramics PYROELECTRIC SPECTRUM temperature-induced phase transition.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部