期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
Tensile strength and failure behavior of rock-mortar interfaces: Direct and indirect measurements 被引量:1
1
作者 Ghasem Shams Patrice Rivard Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期41-55,共15页
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism... The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. 展开更多
关键词 Rock-mortar Rock-concrete Moment tensor inversion(MTI) Acoustic emission(AE) Digital image correlation(DIC) tensile strength Direct tensile test Brazilian test
下载PDF
Effect of brazing temperature on microstructure and tensile strength ofγ-TiAl joint vacuum brazed with micro-nano Ti−Cu−Ni−Nb−Al−Hf filler
2
作者 Li LI Yu-tong CHEN +3 位作者 Lei-xin YUAN Fen LUO Zhi-xue FENG Xiao-qiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2563-2574,共12页
A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the rel... A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures. 展开更多
关键词 γ-TiAl alloy micro-nano filler vacuum brazing interfacial microstructure tensile strength
下载PDF
Effect of the mineral spatial distribution heterogeneity on the tensile strength of granite:Insights from PFC3D-GBM numerical analysis 被引量:3
3
作者 Tao Zhang Liyuan Yu +3 位作者 Yuxuan Peng Hongwen Jing Haijian Su Jiangbo Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1144-1160,共17页
The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow cod... The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow code(PFC),i.e.PFC3D-GBM,is proposed.This model can accomplish the grouping of mineral grains at the 3D scale and then filling them.Then,the effect of the position distribution,geometric size,and volume composite of mineral grains on the cracking behaviour and macroscopic properties of granite are examined by conducting Brazilian splitting tests.The numerical results show that when an external load is applied to a sample,force chains will form around each contact,and the orientation distribution of the force chains is uniform,which is independent of the external load level.Furthermore,the number of high-strength force chains is proportional to the external load level,and the main orientation distribution is consistent with the external loading direction.The main orientation of the cracks is vertical to that of the high-strength force chains.The geometric size of the mineral grains controls the mechanical behaviours.As the average grain size increases,the number of transgranular contacts with higher bonding strength in the region connecting both loading points increases.The number of high-strength force chains increases,leading to an increase in the stress concentration value required for the macroscopic failure of the sample.Due to the highest bonding strength,the generation of transgranular cracks in quartz requires a higher concentrated stress value.With increasing volume composition of quartz,the number of transgranular cracks in quartz distributed in the region connecting both loading points increases,which requires many high-strength force chains.The load level rises,leading to an increase in the tensile strength of the numerical sample. 展开更多
关键词 Rock mechanics tensile strength Spatial distribution of minerals Three-dimensional(3D)grain-based model (GBM) Transgranular contact
下载PDF
Size effects on the tensile strength and fracture toughness of granitic rock in different tests 被引量:1
4
作者 Ignacio Pérez-Rey Andrea Muñoz-Ibáñez +5 位作者 Manuel A.González-Fernández Mauro Muñiz-Menéndez Miguel Herbón Penabad Xian Estévez-Ventosa Jordi Delgado Leandro RAlejano 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2179-2192,共14页
This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of differe... This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of different sizes with the diameter ranging from 30 mm to 84 mm.The samples have been subjected to direct tensile strength(DTS)tests,indirect Brazilian tensile strength(BTS)tests and to two fracture toughness testing approaches.Whereas DTS and fracture toughness were found to consistently grow with sample size,this trend was not clearly identified for BTS,where after an initial grow,a plateau of results was observed.This is a rather complete database of tensile related properties of a single rock type.Even if similar databases are rare,the obtained trends are generally consistent with previous scatter and partial experimental programs.However,different observations apply to different types of rocks and experimental approaches.The differences in variability and mean values of the measured parameters at different scales are critically analysed based on the heterogeneity,granular structure and fracture mechanics approaches.Some potential relations between parameters are revised and an indication is given on potential sample sizes for obtaining reliable results.Extending this database with different types of rocks is thought to be convenient to advance towards a better understanding of the tensile strength of rock materials. 展开更多
关键词 Size effect tensile strength Fracture toughness GRANITE Finite fracture mechanics
下载PDF
Correction of dynamic Brazilian disc tensile strength of rocks under preloading conditions considering the overload phenomenon and invoking the Griffith criterion 被引量:1
5
作者 Kaiwen Xia Yuchao Yu +1 位作者 Bangbiao Wu Wei Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1986-1996,共11页
Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test ... Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks. 展开更多
关键词 Dynamic brazilian disc test Overload phenomenon Dynamic tensile strength Hydrostatic pressure Griffith criterion
下载PDF
A Fuzzy Logic Approach to Predict Tensile Strength in TIG Mild Steel Welds
6
作者 Ademola Adebiyi Oyinbade Kehinde Ademola Imoukhuede Abdulateef Olufolahan Akadiri 《World Journal of Engineering and Technology》 2023年第2期199-207,共6页
Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuz... Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuzzy logic system was employed to predict welding tensile strength. 30 sets of welding experiments were conducted and tensile strength data was collected which were converted from crisp variables into fuzzy sets. The result showed that the fuzzy logic tool is a highly effective tool for predicting tensile strength present in TIG mild steel weld having a coefficient of determination value of 99%. 展开更多
关键词 tensile strength PREDICT Steel Fuzzy Logic Tungsten Inert Gas Welding
下载PDF
Springback and tensile strength of 2A97 aluminum alloy during age forming 被引量:3
7
作者 李红英 鲁晓超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1043-1049,共7页
The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum... The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum alloy based on orthogonal array. The ANOVA analysis indicates that the springback reaches the minimum value when age forming is performed at 210 °C for 20 h using a single-curvature die with a radius of 400 mm, and the tensile strength reaches the maximum value when age forming is performed at 180 °C for 15 h using a single-curvature die with a radius of 1000 mm. The orders of the importance for the three factors of pre-deformation radius, aging temperature and aging time on the springback and tensile strength were determined. By analyzing the predicted results of the multiple quadratic regression and RBFANN methods, the prediction accuracy of the RBFANN model is higher than that of the regression model. 展开更多
关键词 aluminum alloy age forming SPRINGBACK tensile strength orthogonal experiment artificial neural network
下载PDF
Influence of yield-to-tensile strength ratio(Y/T) on failure assessment of defect-free and corroded X70 steel pipeline 被引量:1
8
作者 章顺虎 赵德文 王晓南 《Journal of Central South University》 SCIE EI CAS 2014年第2期460-465,共6页
The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law harde... The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data. 展开更多
关键词 yield-to-tensile strength ratio X70 steel pipeline strain hardening exponent burst pressure engineering tensile strength
下载PDF
TENSILE STRENGTH OF RANDOM ORIENTED SHORT FIBER COMPOSITE
9
作者 唐德敏 许晓秋 +1 位作者 冯建新 方洞浦 《Transactions of Tianjin University》 EI CAS 1998年第2期59-62,共4页
This paper shows a calculation model and a method for predicting the tensile strength of the random distributed short fiber composite.On the basis of Renjie Mao's model,the longitudinal tensile strength of the ali... This paper shows a calculation model and a method for predicting the tensile strength of the random distributed short fiber composite.On the basis of Renjie Mao's model,the longitudinal tensile strength of the aligned short fiber composite is formulated.Considering the transverse tensile strength and in plane shear strength of the unidirectional fiber composite,and the stress transformation relations of two couples of axes,the stress of the unidirectional fiber composite when it is loaded at an arbitrary angle is obtained.With the aid of an equivalence relation,the calculation formulation of the tensile strength of the random short fiber reinforced composite is deduced. 展开更多
关键词 random short fiber composite tensile strength calculation model
下载PDF
Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints 被引量:18
10
作者 S.RAJAKUMAR C.MURALIDHA RAN V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1863-1872,共10页
AA 6061-T6 aluminium alloy(Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high specific strength and good corrosion resistance.Compared with the fusion welding p... AA 6061-T6 aluminium alloy(Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high specific strength and good corrosion resistance.Compared with the fusion welding processes that are routinely used for joining structural aluminium alloys,friction stir welding(FSW) process is an emerging solid state joining process in which the material welded does not melt and recast.Joint strength is influenced by the grain size and tensile strength of the weld nugget region.Hence,an attempt was made to develop empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints.The empirical relationships are developed by response surface methodology(RSM) incorporating FSW tool and process parameters.A linear regression relationship was also established between grain size and tensile strength of the weld nugget of FSW joints. 展开更多
关键词 AA 6061-T6 alloy friction stir welding analysis of variance regression analysis grain size tensile strength
下载PDF
Effects of laser energy density on forming accuracy and tensile strength of selective laser sintering resin coated sands 被引量:17
11
作者 Xu Zhifeng Liang Pei +2 位作者 Yang Wei Li Sisi Cai Changchun 《China Foundry》 SCIE CAS 2014年第3期151-156,共6页
Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = ... Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = P/v), with different laser power(P) and scanning velocity(v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained when P = 30-40 W and v = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excellent forming accuracy has been successfully fabricated. 展开更多
关键词 selective laser sintering coated sands energy density tensile strength forming accuracy
下载PDF
TENSILE STRENGTH AND CREEP RESISTANCE OF Mg-9Al-1Zn BASED ALLOYS WITH CALCIUM ADDITION 被引量:12
12
作者 Y.S. Sun, W.M. Zhang and X.G. Mm Department of Materials Science and Engineering, Southeast University, Nanjing 210096, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第5期330-334,共5页
Small amount of calcium addition to the Mg-9Al-0.8Zn-0.2Mn (AZ91) alloy resulted in obvious influence on mechanical properties. The yield strength of the alloys increased with the increase of Ca addition and the maxim... Small amount of calcium addition to the Mg-9Al-0.8Zn-0.2Mn (AZ91) alloy resulted in obvious influence on mechanical properties. The yield strength of the alloys increased with the increase of Ca addition and the maximum strength was obtained from the alloy containing 0.15% of Ca. The creep resistance at the temperatures between 150-220°C was also significantly increased with Ca addition. The creep rate (at 200°C, 50 MPa) of the alloy with 0.15% Ca addition was one order of magnitude lower than that of the base alloy (AZ91). Microstructural observations revealed that the addition of calcium refined the microstructure and enhanced the thermal stability of the β precipitates, which accounted for the improvement of creep resistance at high temperatures. 展开更多
关键词 ADDITIVES Aluminum alloys CALCIUM CREEP tensile strength
下载PDF
Dynamic tensile strength and failure mechanisms of thermally treated sandstone under dry and water-saturated conditions 被引量:8
13
作者 Pin WANG Tu-bing YIN Bi-wei HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2217-2238,共22页
To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston... To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed. 展开更多
关键词 SANDSTONE dynamic tensile strength hydro-thermal coupling damage loading rate dependence failure mechanism
下载PDF
Compressive and tensile strength of polymer-based fiber composite sand 被引量:7
14
作者 MA Ke LIU Jin +4 位作者 JIANG Can-hui MA Xiao-fan HUANG Lan-hua HE Cheng-zong QI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期528-545,共18页
Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polyme... Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized. 展开更多
关键词 SAND soil reinforcement sisal fiber polyurethane organic polymer compressive strength tensile strength
下载PDF
Application of response surface methodology to maximize tensile strength and minimize interface hardness of friction welded dissimilar joints of austenitic stainless steel and copper alloy 被引量:6
15
作者 G. VAIRAMANI T. SENTHIL KUMAR +1 位作者 S. MALARVIZHI V. BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2250-2259,共10页
An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copp... An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copper (Cu) alloy using response surface methodology (RSM). Three-factor, five-level central composite design matrix was used to specify experimental conditions. Twenty joints were fabricated using ASS and Cu alloy. Tensile strength and interface hardness were measured experimentally. Analysis of variance (ANOVA) method was used to find out significant main and interaction parameters and empirical relationships were developed using regression analysis. The friction welding parameters were optimized by constructing response graphs and contour plots using design expert software. The developed empirical relationships can be effectively used to predict tensile strength and interface hardness of friction welded ASS-Cu joints at 95% confidence level. The developed contour plots can be used to attain required level of optimum conditions to join ASS-Cu alloy by friction welding process. 展开更多
关键词 friction welding austenitic stainless steel copper alloy tensile strength interface hardness response surface methodology
下载PDF
Optimization of pulsed current gas tungsten arc welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy 被引量:7
16
作者 G.PADMANABAN V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期467-476,共10页
An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency... An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency and pulse on time were studied. The experiments were conducted based on a four-factor, five-level, central composite design matrix. The developed empirical relationship can be effectively used to predict the tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy joints at 95% confidence level. The results indicate that pulse frequency has the greatest influence on tensile strength, followed by peak current, pulse on time and base current. 展开更多
关键词 AZ31B magnesium alloy pulsed current gas tungsten arc welding response surface methodology OPTIMIZATION tensile strength
下载PDF
Effect of process parameters on tensile strength of friction stir welded cast A356 aluminium alloy joints 被引量:5
17
作者 M.JAYARAMAN V.B ALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期605-615,共11页
A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and ... A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and hot cracking.However,friction stir welding(FSW) can be used to weld this cast alloy without above mentioned defects.An attempt was made to study the effect of FSW process parameters on the tensile strength of cast A356 aluminium alloy.Joints were made using different combinations of tool rotation speed,welding speed and axial force.The quality of weld zone was analyzed by macrostructure and microstructure analyses.Tensile strengths of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 1000 r/min,a welding speed of 75 mm/min and an axial force of 5 kN showed a higher tensile strength compared to the other joints. 展开更多
关键词 A356 aluminium alloy friction stir welding tool rotation speed welding speed axial force tensile strength
下载PDF
Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model 被引量:6
18
作者 Kaiwen Xia Wei Yao Bangbiao Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期116-124,共9页
Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensi... Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks.Here we examine dynamic tensile strength values of Laurentian granite(LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc(BD) test, and dynamic semi-circular bending(SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension. 展开更多
关键词 Dynamic tensile strength Brazilian disc(BD) test Semi-circular bending(SCB) Direct tension Split Hopkinson bar
下载PDF
A Study of Tensile Strength Tests of Arborous Species Root System in Forest Engineering Technique of Shallow Landslide 被引量:6
19
作者 YANG Yonghong LIU Shuzhen +1 位作者 WANG Chenghua TANG Chuan 《Wuhan University Journal of Natural Sciences》 CAS 2006年第4期892-896,共5页
One experiment was conducted, through tensile tests of Albazzia and Eucalypt roots culled from the fields. The other experiment was conducted, by testing anti-drawing strength of these root systems in the Albazzia and... One experiment was conducted, through tensile tests of Albazzia and Eucalypt roots culled from the fields. The other experiment was conducted, by testing anti-drawing strength of these root systems in the Albazzia and Eucalypt lands. These two experiments had an aim to give insights into the maximum tensile strength and anti-drawing strength of the root systems. Results indicated that the maximum tensile strength of root system is in an exponential relation with the diameter of root system while the maximum tensile strength is positively correlative with the diameter of root system. Anti-drawing force of root system together with root diameter, length, and soil bulk density are folded into a regression equation in an attempt to figure out the static friction coefficient between root system and its ambient soil. 展开更多
关键词 root system tensile strength anti-drawing strength tensile force
下载PDF
Optimization of tensile strength for new type acetone-urea-formaldehyde furan resin using uniform design 被引量:5
20
作者 Lin Shengjun Zhao Wei +2 位作者 Li Yuancai Tong Siyi Wang Wenqing 《China Foundry》 SCIE CAS 2011年第1期30-35,共6页
In this study,the 24 h tensile strength of new type acetone-urea-formaldehyde furan resin (nitrogen content 3%) was investigated by uniform design optimization.Four independent variables such as acetone:formaldehyde m... In this study,the 24 h tensile strength of new type acetone-urea-formaldehyde furan resin (nitrogen content 3%) was investigated by uniform design optimization.Four independent variables such as acetone:formaldehyde molar ratio (mol/mol),solution pH value,reaction temperature (℃) and reaction time (min) were considered in the experiments.U13(134) uniform design was employed and the equation of 24 h tensile strength model was obtained after 13 experimentations.The 24 h tensile strength was optimized by applying single factor experiments and stepwise non-linear regression analysis.Minitab (Minitab 15 trial version) and MATLAB (R2010a trial version) were used for data analysis.The t-value and p-value indicate that the major impact factors include the interaction effect of solution pH value and reaction temperature (X2X3),the linear terms of acetone:formaldehyde molar ratio (X1),reaction time (X4) followed by the square effects of acetone/formaldehyde molar ratio (X1X1).The optimized results were achieved with the acetone:formaldehyde molar ratio (mol/mol) at 3:1,solution pH value at 6.0,reaction temperature at 70℃,and reaction time at 140 min,respectively.This method can not only significantly reduce the number and cost of the tests,but also provide a good experimental design strategy for the development of furan resin.The investigation shows that the predicted results of 24 h tensile strength are consistent well with the experimental ones. 展开更多
关键词 acetone-urea-formaldehyde furan resin 24 h tensile strength single factor experiment uniform design stepwise regression
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部