Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digit...Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment,personnel,and processes,a scientific and standardized evaluation method to the system is very necessary.Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad,considers the testing characteristics of DR equipment,develops a complete set of DR testing system evaluation procedures.It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation.To check the repeatability and reliability of the detectable system,five process welds with 200 real metallographic defects were fabricated in the laboratory.From the detected results,the DR system has good repeatability in image quality,and the detectable defect size reaches 0.85 mm under achieving 90%detection probability at a confidence level of 95%,the error of detected defect length is±2 mm,and the error of detected defect localization is±5 mm.The qualitative and quantitative detection of defects are accurate and reliable.The test further confirmed the reliable detection ability of the DR detection system,and fully validated the scientific and practical evaluation method designed.The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines.The designed program,test,and evaluation content can serve as an important basis for the formulation of relevant specifications or standards.展开更多
1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is...1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.展开更多
Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering...Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.展开更多
In software testing,the quality of test cases is crucial,but manual generation is time-consuming.Various automatic test case generation methods exist,requiring careful selection based on program features.Current evalu...In software testing,the quality of test cases is crucial,but manual generation is time-consuming.Various automatic test case generation methods exist,requiring careful selection based on program features.Current evaluation methods compare a limited set of metrics,which does not support a larger number of metrics or consider the relative importance of each metric to the final assessment.To address this,we propose an evaluation tool,the Test Case Generation Evaluator(TCGE),based on the learning to rank(L2R)algorithm.Unlike previous approaches,our method comprehensively evaluates algorithms by considering multiple metrics,resulting in a more reasoned assessment.The main principle of the TCGE is the formation of feature vectors that are of concern by the tester.Through training,the feature vectors are sorted to generate a list,with the order of the methods on the list determined according to their effectiveness on the tested assembly.We implement TCGE using three L2R algorithms:Listnet,LambdaMART,and RFLambdaMART.Evaluation employs a dataset with features of classical test case generation algorithms and three metrics—Normalized Discounted Cumulative Gain(NDCG),Mean Average Precision(MAP),and Mean Reciprocal Rank(MRR).Results demonstrate the TCGE’s superior effectiveness in evaluating test case generation algorithms compared to other methods.Among the three L2R algorithms,RFLambdaMART proves the most effective,achieving an accuracy above 96.5%,surpassing LambdaMART by 2%and Listnet by 1.5%.Consequently,the TCGE framework exhibits significant application value in the evaluation of test case generation algorithms.展开更多
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
This paper evaluates the Achievement Test for Junior High School Graduation in reliability,validity and practicality,which is aimed to help junior English teachers to understand how to identify a useful test and devel...This paper evaluates the Achievement Test for Junior High School Graduation in reliability,validity and practicality,which is aimed to help junior English teachers to understand how to identify a useful test and develop their test writing skills as well as improve their teaching.The result suggests that the Achievement Test is a reasonably reliable and valid test though some of the listening items need to be improved.It is the ideal frame of evaluating language learning through language testing.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat...Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.展开更多
As the increasing popularity and complexity of Web applications and the emergence of their new characteristics, the testing and maintenance of large, complex Web applications are becoming more complex and difficult. W...As the increasing popularity and complexity of Web applications and the emergence of their new characteristics, the testing and maintenance of large, complex Web applications are becoming more complex and difficult. Web applications generally contain lots of pages and are used by enormous users. Statistical testing is an effective way of ensuring their quality. Web usage can be accurately described by Markov chain which has been proved to be an ideal model for software statistical testing. The results of unit testing can be utilized in the latter stages, which is an important strategy for bottom-to-top integration testing, and the other improvement of extended Markov chain model (EMM) is to present the error type vector which is treated as a part of page node. this paper also proposes the algorithm for generating test cases of usage paths. Finally, optional usage reliability evaluation methods and an incremental usability regression testing model for testing and evaluation are presented. Key words statistical testing - evaluation for Web usability - extended Markov chain model (EMM) - Web log mining - reliability evaluation CLC number TP311. 5 Foundation item: Supported by the National Defence Research Project (No. 41315. 9. 2) and National Science and Technology Plan (2001BA102A04-02-03)Biography: MAO Cheng-ying (1978-), male, Ph.D. candidate, research direction: software testing. Research direction: advanced database system, software testing, component technology and data mining.展开更多
Following publication of the original article[1],the authors identified an error in the article title.The first word ‘Review’ is added mistakenly by the typesetter.
Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flas...Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flasks containing the mineral medium, the test oil and the inoculum were placed in incubation together with flasks containing poisoned blanks for periods of 0 and 21 days, respectively. Flasks containing the reference materials in place of the test oil were run in parallel. At the end of the incubation period, the contents of the flasks were subjected to sonic vibration, and were acidified and extracted by using CCI4. The extracts were then analysed by infra-red (IR) spectrometer to measure the maximum absorption of the C-H stretch of CH2-CH3 band at wavelength of 2 930 cm^-1. The absorption values were used to calculate the residual oil contents of the poisoned and test flasks. Consequently the biodegradability of the test oil was calculated. The test results indicate that the differences in the biodegradability of test materials in different tests are within 5.5%, and consistent with the data described in Coordinating European Council (CEC) L-33- A-93. The biodegradability of lubricants can be evaluated by this method effectively.展开更多
Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial app...Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial applications.This paper describes the basic principles of PA technology for NDT/E and its applications in recent years.PA technology for NDT/E includes the use of a modulated continuous-wave laser and a pulsed laser for PA wave excitation,PA-generated ultrasonic waves,and all-optical PA wave excitation and detection.PA technology for NDT/E has demonstrated broad applications,including the imaging of railway cracks and defects,the imaging of Li metal batteries,the measurements of the porosity and Young’s modulus,the detection of defects and damage in silicon wafers,and a visualization of underdrawings in paintings.展开更多
With the implementation of new-generation launch vehicles,space stations,lunar and deep space exploration,etc.,the development of spacecraft structures will face new challenges. In order to reduce the spacecraft weigh...With the implementation of new-generation launch vehicles,space stations,lunar and deep space exploration,etc.,the development of spacecraft structures will face new challenges. In order to reduce the spacecraft weight and increase the payload,composite material structures will be widely used. It is difficult to evaluate the strength and life of composite materials due to their complex mechanism and various phenomena in damage and failure.Meanwhile,the structures of composite materials used in spacecrafts will bear complex loads,including the coupling loads of tension,pressure,bending,shear,and torsion. Static loads,thermal loads,and vibration loads may occur at the same time,which asks for verification requirements to ensure the structure safety. Therefore,it is necessary to carry out a systematic multi-level experimental study. In this paper,the building block approach (BBA) is used to investigate the multilevel composite material structures for spacecrafts. The advanced measurement technology is adopted based on digital image correlation (DIC) and piezoelectric and optical fiber sensors to measure the composite material structure deformation. The virtual experiment technology is applied to provide sufficient and reliable data for the evaluation of the composite material structures of spacecrafts.展开更多
The paper is an evaluative research on the possible washback effects of College English Test. By comparing and analyzing the differences between the old and new tests, it points out three major changes and their possi...The paper is an evaluative research on the possible washback effects of College English Test. By comparing and analyzing the differences between the old and new tests, it points out three major changes and their possible washback effects on the process of English language teaching and learning: abandon the part of Grammar & Vocabulary, increase the proportion of listening test and change the test reporting form.展开更多
This paper deals with the effect of grade entitlement on English programs in Japanese universities. For years, teachers and administrators have noted that even though Japan is one of the highest spending countries on ...This paper deals with the effect of grade entitlement on English programs in Japanese universities. For years, teachers and administrators have noted that even though Japan is one of the highest spending countries on English education, there has not been a commensurate increase in English ability. Most research to explain this disparity has thus far focused on methodology, class size and teacher qualifications. Recent research dealing with academic entitlement at US universities may offer an alternative explanation for some of the lack of success that Japanese universities have experienced. Ellen Greenberger, one of the author's of Self-entitled college students: Contributions of personality, parenting and motivational factors, which appeared in 2008 in The Journal of Youth and Adolescence claims that in recent years, the number of students appealing their grades and expecting to be rewarded for effort rather than results has increased. Greenberger's paper motivated this study. 200 Japanese students completed a survey that presented a number of grade scenarios. The students were asked, based on test grades and completed assignments, what grade a student should receive in each hypothetical situation. Similarly, full-time and part-time teachers were asked what grade they would give in each situation. This paper explains the different situations, students' and teachers' responses to the scenarios, and then discusses the implications for English education in Japan.展开更多
This paper is to evaluate an oral test paper for the middle school graduates of Jiangsu Province according to its validity and reliability.And then the advice on how to improve the reliability is given.
Nowadays,clear evaluation models and methods are lacking in classified protection of information system,which our country is making efforts to promote.The quantitative evaluation of classified protection of informatio...Nowadays,clear evaluation models and methods are lacking in classified protection of information system,which our country is making efforts to promote.The quantitative evaluation of classified protection of information system security is studied.An indicators system of testing and evaluation is established.Furthermore,a model of unit testing and evaluation and a model of entirety testing and evaluation are presented respectively.With analytic hierarchy process and two-grade fuzzy comprehensive evaluation,the subjective and uncertain data of evaluation will be quantitatively analyzed by comprehensive evaluation.Particularly,the variable weight method is used to model entirety testing and evaluation.It can solve the problem that the weights need to be adjusted because of the relationship role which enhances or reduces security of information system.Finally,the paper demonstrates that the model testing and evaluation can be validly used to evaluate the information system by an example.The model proposed in this paper provides a new valuable way for classified protection of information system security.展开更多
The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to it...The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.展开更多
A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive ...A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive perception,decisionmaking,and control.This involves many work points and complex coupling relationships,indicating it needs to be performed in stages and coordinated to address key problems in all directions and along multiple points.However,there are no existing unifed test or analysis tools.Therefore,this study proposed a virtual test and evaluation method for a fully mechanized mining production system with diferent smart levels.This is based on the concept of“real data processing–virtual scene construction–setting key information points–virtual operation and evaluation.”The actual operational data for a specifc working face geology and equipment were reasonably transformed into a visual virtual scene through a movement relationship model.The virtual operations and mining conditions of the working face were accurately reproduced.Based on the sensor and execution error analyses for diferent smart levels,the input interface for sensing,decision-making,and control was established for each piece of equipment,and an operation evaluation system was constructed.The system comprehensively simulates and tests the key points of sensing decision-making and control with various smart levels.The experimental results showed that the virtual scene constructed based on actual operational data has a high simulation degree.Users can simulate,analyze,and evaluate the overall operations of the smart mining 2.0–4.0 working face by inputting key information.The future direction for the smart development of fully mechanized mining is highlighted.展开更多
The effect of rating scales and test parts of body on the fabric-evoked prickle evaluation results are studied by carrying out subjective evaluation tests under controlled environment conditions (24 4±1)℃, (6...The effect of rating scales and test parts of body on the fabric-evoked prickle evaluation results are studied by carrying out subjective evaluation tests under controlled environment conditions (24 4±1)℃, (65 =l= 5) %RH. Ten college female students aged about 20 were chosen as the subjects, who have participated a preliminary training on subjective prickle evaluation. The prickle of a range of 9 light-weight worsted woven wool and wool blend fabrics and a cotton fabric were tested by using a 1 - 5 rating scale and using a 0 - 10 rating scale respectively at different test parts of body respectively such as forearm, upper arm ball and neck back. The test results were statistically analyzed. It is found that there is a significant correlation coefficient between the evaluation results of using the 1 - 5 rating scale and of using the 0- 10 rating scale. It is also found that there are highly significant correlation coefficients between the evaluation results of using the forearm prickle test and the neck back prickle test, between the evaluation results of using the neck back prickle test and the upper arm ball prickle test, and between the evaluation results of using the forearm prickle test and the upper arm ball prickle test. It is suggested that the forearm prickle test is preferable in evaluating fabric-evoked prickle for its convenience and sensitivity.展开更多
文摘Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment,personnel,and processes,a scientific and standardized evaluation method to the system is very necessary.Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad,considers the testing characteristics of DR equipment,develops a complete set of DR testing system evaluation procedures.It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation.To check the repeatability and reliability of the detectable system,five process welds with 200 real metallographic defects were fabricated in the laboratory.From the detected results,the DR system has good repeatability in image quality,and the detectable defect size reaches 0.85 mm under achieving 90%detection probability at a confidence level of 95%,the error of detected defect length is±2 mm,and the error of detected defect localization is±5 mm.The qualitative and quantitative detection of defects are accurate and reliable.The test further confirmed the reliable detection ability of the DR detection system,and fully validated the scientific and practical evaluation method designed.The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines.The designed program,test,and evaluation content can serve as an important basis for the formulation of relevant specifications or standards.
文摘1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.
文摘Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.
文摘In software testing,the quality of test cases is crucial,but manual generation is time-consuming.Various automatic test case generation methods exist,requiring careful selection based on program features.Current evaluation methods compare a limited set of metrics,which does not support a larger number of metrics or consider the relative importance of each metric to the final assessment.To address this,we propose an evaluation tool,the Test Case Generation Evaluator(TCGE),based on the learning to rank(L2R)algorithm.Unlike previous approaches,our method comprehensively evaluates algorithms by considering multiple metrics,resulting in a more reasoned assessment.The main principle of the TCGE is the formation of feature vectors that are of concern by the tester.Through training,the feature vectors are sorted to generate a list,with the order of the methods on the list determined according to their effectiveness on the tested assembly.We implement TCGE using three L2R algorithms:Listnet,LambdaMART,and RFLambdaMART.Evaluation employs a dataset with features of classical test case generation algorithms and three metrics—Normalized Discounted Cumulative Gain(NDCG),Mean Average Precision(MAP),and Mean Reciprocal Rank(MRR).Results demonstrate the TCGE’s superior effectiveness in evaluating test case generation algorithms compared to other methods.Among the three L2R algorithms,RFLambdaMART proves the most effective,achieving an accuracy above 96.5%,surpassing LambdaMART by 2%and Listnet by 1.5%.Consequently,the TCGE framework exhibits significant application value in the evaluation of test case generation algorithms.
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
文摘This paper evaluates the Achievement Test for Junior High School Graduation in reliability,validity and practicality,which is aimed to help junior English teachers to understand how to identify a useful test and develop their test writing skills as well as improve their teaching.The result suggests that the Achievement Test is a reasonably reliable and valid test though some of the listening items need to be improved.It is the ideal frame of evaluating language learning through language testing.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金supported by the Implementation Programs for Marine Renewable Energy Special Funds (GHME2012ZC02)
文摘Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.
文摘As the increasing popularity and complexity of Web applications and the emergence of their new characteristics, the testing and maintenance of large, complex Web applications are becoming more complex and difficult. Web applications generally contain lots of pages and are used by enormous users. Statistical testing is an effective way of ensuring their quality. Web usage can be accurately described by Markov chain which has been proved to be an ideal model for software statistical testing. The results of unit testing can be utilized in the latter stages, which is an important strategy for bottom-to-top integration testing, and the other improvement of extended Markov chain model (EMM) is to present the error type vector which is treated as a part of page node. this paper also proposes the algorithm for generating test cases of usage paths. Finally, optional usage reliability evaluation methods and an incremental usability regression testing model for testing and evaluation are presented. Key words statistical testing - evaluation for Web usability - extended Markov chain model (EMM) - Web log mining - reliability evaluation CLC number TP311. 5 Foundation item: Supported by the National Defence Research Project (No. 41315. 9. 2) and National Science and Technology Plan (2001BA102A04-02-03)Biography: MAO Cheng-ying (1978-), male, Ph.D. candidate, research direction: software testing. Research direction: advanced database system, software testing, component technology and data mining.
文摘Following publication of the original article[1],the authors identified an error in the article title.The first word ‘Review’ is added mistakenly by the typesetter.
基金China Petroleum & Chemical Corporation (No. 104141)
文摘Using carbon tetrachloride (CCl4) as extraction agent, the activated sludge from Tianjin Jizhuangzi Sewage Treatment Plant as inoculum, the test study on biodegradability of lubricants was carried out. The test flasks containing the mineral medium, the test oil and the inoculum were placed in incubation together with flasks containing poisoned blanks for periods of 0 and 21 days, respectively. Flasks containing the reference materials in place of the test oil were run in parallel. At the end of the incubation period, the contents of the flasks were subjected to sonic vibration, and were acidified and extracted by using CCI4. The extracts were then analysed by infra-red (IR) spectrometer to measure the maximum absorption of the C-H stretch of CH2-CH3 band at wavelength of 2 930 cm^-1. The absorption values were used to calculate the residual oil contents of the poisoned and test flasks. Consequently the biodegradability of the test oil was calculated. The test results indicate that the differences in the biodegradability of test materials in different tests are within 5.5%, and consistent with the data described in Coordinating European Council (CEC) L-33- A-93. The biodegradability of lubricants can be evaluated by this method effectively.
基金S.-L.Chen acknowledges funding from the National Natural Science Foundation of China,No.61775134C.Tian acknowledges funding from the National Natural Science Foundation of China,No.61705216the Anhui Science and Technology Department,No.18030801138.
文摘Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial applications.This paper describes the basic principles of PA technology for NDT/E and its applications in recent years.PA technology for NDT/E includes the use of a modulated continuous-wave laser and a pulsed laser for PA wave excitation,PA-generated ultrasonic waves,and all-optical PA wave excitation and detection.PA technology for NDT/E has demonstrated broad applications,including the imaging of railway cracks and defects,the imaging of Li metal batteries,the measurements of the porosity and Young’s modulus,the detection of defects and damage in silicon wafers,and a visualization of underdrawings in paintings.
文摘With the implementation of new-generation launch vehicles,space stations,lunar and deep space exploration,etc.,the development of spacecraft structures will face new challenges. In order to reduce the spacecraft weight and increase the payload,composite material structures will be widely used. It is difficult to evaluate the strength and life of composite materials due to their complex mechanism and various phenomena in damage and failure.Meanwhile,the structures of composite materials used in spacecrafts will bear complex loads,including the coupling loads of tension,pressure,bending,shear,and torsion. Static loads,thermal loads,and vibration loads may occur at the same time,which asks for verification requirements to ensure the structure safety. Therefore,it is necessary to carry out a systematic multi-level experimental study. In this paper,the building block approach (BBA) is used to investigate the multilevel composite material structures for spacecrafts. The advanced measurement technology is adopted based on digital image correlation (DIC) and piezoelectric and optical fiber sensors to measure the composite material structure deformation. The virtual experiment technology is applied to provide sufficient and reliable data for the evaluation of the composite material structures of spacecrafts.
文摘The paper is an evaluative research on the possible washback effects of College English Test. By comparing and analyzing the differences between the old and new tests, it points out three major changes and their possible washback effects on the process of English language teaching and learning: abandon the part of Grammar & Vocabulary, increase the proportion of listening test and change the test reporting form.
文摘This paper deals with the effect of grade entitlement on English programs in Japanese universities. For years, teachers and administrators have noted that even though Japan is one of the highest spending countries on English education, there has not been a commensurate increase in English ability. Most research to explain this disparity has thus far focused on methodology, class size and teacher qualifications. Recent research dealing with academic entitlement at US universities may offer an alternative explanation for some of the lack of success that Japanese universities have experienced. Ellen Greenberger, one of the author's of Self-entitled college students: Contributions of personality, parenting and motivational factors, which appeared in 2008 in The Journal of Youth and Adolescence claims that in recent years, the number of students appealing their grades and expecting to be rewarded for effort rather than results has increased. Greenberger's paper motivated this study. 200 Japanese students completed a survey that presented a number of grade scenarios. The students were asked, based on test grades and completed assignments, what grade a student should receive in each hypothetical situation. Similarly, full-time and part-time teachers were asked what grade they would give in each situation. This paper explains the different situations, students' and teachers' responses to the scenarios, and then discusses the implications for English education in Japan.
文摘This paper is to evaluate an oral test paper for the middle school graduates of Jiangsu Province according to its validity and reliability.And then the advice on how to improve the reliability is given.
基金supported in part by National Natural Science Foundation of China under Grant No. 60970115 and 91018008Science and Technology Foundation of Guizhou Province,China under Grant No. 20112213+1 种基金2010 Doctoral Scientific Research Foundation of Guizhou Normal University,ChinaNatural Science Research Project of Education Department of Guizhou Province,China under Grant No. 20090034
文摘Nowadays,clear evaluation models and methods are lacking in classified protection of information system,which our country is making efforts to promote.The quantitative evaluation of classified protection of information system security is studied.An indicators system of testing and evaluation is established.Furthermore,a model of unit testing and evaluation and a model of entirety testing and evaluation are presented respectively.With analytic hierarchy process and two-grade fuzzy comprehensive evaluation,the subjective and uncertain data of evaluation will be quantitatively analyzed by comprehensive evaluation.Particularly,the variable weight method is used to model entirety testing and evaluation.It can solve the problem that the weights need to be adjusted because of the relationship role which enhances or reduces security of information system.Finally,the paper demonstrates that the model testing and evaluation can be validly used to evaluate the information system by an example.The model proposed in this paper provides a new valuable way for classified protection of information system security.
基金National Natural Science Foundation of China(Grant Nos.52275096,52005108,52275523)Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone High-end Equipment Vibration and Noise Detection and Fault Diagnosis Collaborative Innovation Platform ProjectFujian Provincial Major Research Project(Grant No.2022HZ024005)。
文摘The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.
基金Funding National Natural Science Foundation of China,52004174Major Science and Technology Projects in Shanxi Province,202101020101021+2 种基金Fund for Shanxi“1331”ProjectKey Project of the Chinese Society of Academic Degrees and Graduate Education,2020ZDA12Natural Science Foundation of Shanxi Province,201901D211022.
文摘A smart fully mechanized coal mining working face is comprised of various heterogeneous equipment that work together in unknown coal seam environments.The goal is to form a smart operational system with comprehensive perception,decisionmaking,and control.This involves many work points and complex coupling relationships,indicating it needs to be performed in stages and coordinated to address key problems in all directions and along multiple points.However,there are no existing unifed test or analysis tools.Therefore,this study proposed a virtual test and evaluation method for a fully mechanized mining production system with diferent smart levels.This is based on the concept of“real data processing–virtual scene construction–setting key information points–virtual operation and evaluation.”The actual operational data for a specifc working face geology and equipment were reasonably transformed into a visual virtual scene through a movement relationship model.The virtual operations and mining conditions of the working face were accurately reproduced.Based on the sensor and execution error analyses for diferent smart levels,the input interface for sensing,decision-making,and control was established for each piece of equipment,and an operation evaluation system was constructed.The system comprehensively simulates and tests the key points of sensing decision-making and control with various smart levels.The experimental results showed that the virtual scene constructed based on actual operational data has a high simulation degree.Users can simulate,analyze,and evaluate the overall operations of the smart mining 2.0–4.0 working face by inputting key information.The future direction for the smart development of fully mechanized mining is highlighted.
文摘The effect of rating scales and test parts of body on the fabric-evoked prickle evaluation results are studied by carrying out subjective evaluation tests under controlled environment conditions (24 4±1)℃, (65 =l= 5) %RH. Ten college female students aged about 20 were chosen as the subjects, who have participated a preliminary training on subjective prickle evaluation. The prickle of a range of 9 light-weight worsted woven wool and wool blend fabrics and a cotton fabric were tested by using a 1 - 5 rating scale and using a 0 - 10 rating scale respectively at different test parts of body respectively such as forearm, upper arm ball and neck back. The test results were statistically analyzed. It is found that there is a significant correlation coefficient between the evaluation results of using the 1 - 5 rating scale and of using the 0- 10 rating scale. It is also found that there are highly significant correlation coefficients between the evaluation results of using the forearm prickle test and the neck back prickle test, between the evaluation results of using the neck back prickle test and the upper arm ball prickle test, and between the evaluation results of using the forearm prickle test and the upper arm ball prickle test. It is suggested that the forearm prickle test is preferable in evaluating fabric-evoked prickle for its convenience and sensitivity.