It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr...It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
Boom clay formation is a potential natural host rock for geological disposal of high-level nuclear waste in Belgium.Heating pulse tests with controlled power supply(maximum temperature was limited to 85℃) and contr...Boom clay formation is a potential natural host rock for geological disposal of high-level nuclear waste in Belgium.Heating pulse tests with controlled power supply(maximum temperature was limited to 85℃) and controlled hydraulic boundary conditions were performed under nearly constant volume conditions to study the impact of thermal loading on the clay formation.Selected test results of intact borehole samples retrieved in horizontal direction are presented and discussed.The study focuses on the time evolution of temperature and pore water pressure changes along heating and cooling paths,i.e.pore pressure build-up during quasi-undrained heating and later dissipation at constant temperature.展开更多
A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater ex...A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.展开更多
Argillaceous limestone formations are being proposed as sites suitable for constructing a deep geologic repository for storing low-to intermediate-level nuclear waste in southern Ontario, Canada. The Cobourg limestone...Argillaceous limestone formations are being proposed as sites suitable for constructing a deep geologic repository for storing low-to intermediate-level nuclear waste in southern Ontario, Canada. The Cobourg limestone is characterized by a visual appearance of heterogeneity resulting from light gray calcite nodular regions interspersed with dark gray calcite-dolomite-quartz partings containing a clay component. This paper presents the results of experiments conducted to determine the permeability of both the light gray and the dark gray species of the Cobourg limestone. The permeabilities were successfully estimated from both steady state and hydraulic pulse tests conducted using specially designed miniature water entry ports, which were epoxied to the surface of the rock sample containing cavities drilled into the rock species of interest. The results show that the dark gray species of the Cobourg limestone has a permeability that is roughly one order of magnitude greater than the light gray calcite species.展开更多
Wide-bandgap devices,such as silicon-carbide metal-oxide-semiconductor field-effect transistors(MOSFETs)and gallium-nitride high electron mobility transistors(HEMTs),exhibit an excellent figure of merits compared to c...Wide-bandgap devices,such as silicon-carbide metal-oxide-semiconductor field-effect transistors(MOSFETs)and gallium-nitride high electron mobility transistors(HEMTs),exhibit an excellent figure of merits compared to conventional silicon devices.Challenges of applying such fast switches include accurate extraction and optimization of parasitics especially when 6high-efficiency operation,all of which require the comprehensive understanding of such switch especially its interaction with peripheral circuits.Particularly for the enhancement-mode GaN HEMTs without the intrinsic body diode,when reverse conducting,its high voltage drop causes a high dead-time loss,which has rarely a concern in silicon devices.This paper focuses on 650V/30~60A enhancement-mode GaN HEMTs provided by GaN Systems,analytically models its switching behaviors,summarizes the impact of parasitics and dead time,and applies it in two DC/DC converters.Systematic design rules are generated not only for soft switching but also for hard switching applications.展开更多
AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decre...AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decreased.The threshold voltage shifted positively by approximately 25%and the saturation currents decreased by approximately 14%.Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites,which increased the gate current tunneling probability.According to the pulsed output characteristics,the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation.The time constants of the induced surface traps were mainly less than 10μs.展开更多
The noise as an undesired phenomenon often appears in the pulsed eddy current testing(PECT)signal, and it is difficult to recognize the character of the testing signal. One of the most common noises presented in the P...The noise as an undesired phenomenon often appears in the pulsed eddy current testing(PECT)signal, and it is difficult to recognize the character of the testing signal. One of the most common noises presented in the PECT signal is the Gaussian noise, since it is caused by the testing environment. A new denoising approach based on singular value decomposition(SVD) is proposed in this paper to reduce the Gaussian noise of PECT signal. The approach first discusses the relationship between signal to noise ratio(SNR) and negentropy of PECT signal. Then the Hankel matrix of PECT signal is constructed for noise reduction, and the matrix is divided into noise subspace and signal subspace by a singular valve threshold. Based on the theory of negentropy, the optimal matrix dimension and threshold are chosen to improve the performance of denoising. The denoised signal Hankel matrix is reconstructed by the singular values of signal subspace, and the denoised signal is finally extracted from this matrix. Experiment is performed to verify the feasibility of the proposed approach, and the results indicate that the proposed approach can reduce the Gaussian noise of PECT signal more effectively compared with other existing approaches.展开更多
The diode-triggered silicon-controlled rectifier(DTSCR) is widely used for electrostatic discharge(ESD) protection in advanced CMOS process owing to its advantages, such as design simplification, adjustable trigge...The diode-triggered silicon-controlled rectifier(DTSCR) is widely used for electrostatic discharge(ESD) protection in advanced CMOS process owing to its advantages, such as design simplification, adjustable trigger/holding voltage, low parasitic capacitance. However, the multiple-triggering effect in the typical DTSCR device may cause undesirable larger overall trigger voltage, which results in a reduced ESD safe margin. In previous research, the major cause is attributed to the higher current level required in the intrinsic SCR. The related discussions indicate that it seems to result from the current division rule between the intrinsic and parasitic SCR formed in the triggering process. In this letter, inserting a large space into the trigger diodes is proposed to get a deeper insight into this issue. The triggering current is observed to be regularly reduced along with the increased space, which confirms that the current division is determined by the parasitic resistance distributed between the intrinsic and parasitic SCR paths. The theoretical analysis is well confirmed by device simulation and transmission line pulse(TLP) test results. The reduced overall trigger voltage is achieved in the modified DTSCR structures due to the comprehensive result of the parasitic resistance vs triggering current, which indicates a minimized multipletriggering effect.展开更多
A hardware platform using broadband antenna,oscilloscope,and spectrum analyzer is designed to receive radio frequency(RF)signals from electromagnetic radiation leakage of computers in the office environment.The proces...A hardware platform using broadband antenna,oscilloscope,and spectrum analyzer is designed to receive radio frequency(RF)signals from electromagnetic radiation leakage of computers in the office environment.The process of receiving and the processing techniques have also been given.Then,the software radio-based computing models and software algorithms are proposed to demodulate and decode the RF signals.An experimental result shows that the text information can be recovered from electromagnetic(EM)leakage wave of computer by this interception system.This architecture not only reduces the cost of the system’s hardware but also makes interception more flexible.The innovation points of this paper are recovering the video information in EM leakage wave of computers in an ordinary office environment based on public equipments and proposing the process of receiving processing techniques that only use the software radiobased computing models and software algorithms.展开更多
This work presents the design of a novel static-triggered power-rail electrostatic discharge(ESD)clamp circuit. The superior transient-noise immunity of the static ESD detection mechanism over the transient one is fir...This work presents the design of a novel static-triggered power-rail electrostatic discharge(ESD)clamp circuit. The superior transient-noise immunity of the static ESD detection mechanism over the transient one is firstly discussed. Based on the discussion, a novel power-rail ESD clamp circuit utilizing the static ESD detection mechanism is proposed. By skillfully incorporating a thyristor delay stage into the trigger circuit(TC), the proposed circuit achieves the best ESD-conduction behavior while consuming the lowest leakage current(Ileak) at the normal bias voltage among all investigated circuits in this work. In addition, the proposed circuit achieves an excellent false-triggering immunity against fast power-up pulses. All investigated circuits are fabricated in a 65-nm CMOS process. Performance superiorities of the proposed circuit are fully verified by both simulation and test results. Moreover, the proposed circuit offers an efficient on-chip ESD protection scheme considering the worst discharge case in the utilized process.展开更多
基金support from Shenzhen Municipal Development and Reform Commission(Grant Number:SDRC[2016]172)Shenzhen Science and Technology Program(Grant No.KQTD20170810150821146)Interdisciplinary Research and Innovation Fund of Tsinghua Shenzhen International Graduate School,and Shanghai Shun Feng Machinery Co.,Ltd.
文摘It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金support provided by EIG EURIDICE/SCK.CEN(Belgium)through a PhD collaboration project with International Centre for Numerical Methods in Engineering(CIMNE,Spain)
文摘Boom clay formation is a potential natural host rock for geological disposal of high-level nuclear waste in Belgium.Heating pulse tests with controlled power supply(maximum temperature was limited to 85℃) and controlled hydraulic boundary conditions were performed under nearly constant volume conditions to study the impact of thermal loading on the clay formation.Selected test results of intact borehole samples retrieved in horizontal direction are presented and discussed.The study focuses on the time evolution of temperature and pore water pressure changes along heating and cooling paths,i.e.pore pressure build-up during quasi-undrained heating and later dissipation at constant temperature.
文摘A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.
基金supported by NSERC Discoverythe studentship support provided by a McGill Engineering Doctoral Award, FQRNT and the SAAQ
文摘Argillaceous limestone formations are being proposed as sites suitable for constructing a deep geologic repository for storing low-to intermediate-level nuclear waste in southern Ontario, Canada. The Cobourg limestone is characterized by a visual appearance of heterogeneity resulting from light gray calcite nodular regions interspersed with dark gray calcite-dolomite-quartz partings containing a clay component. This paper presents the results of experiments conducted to determine the permeability of both the light gray and the dark gray species of the Cobourg limestone. The permeabilities were successfully estimated from both steady state and hydraulic pulse tests conducted using specially designed miniature water entry ports, which were epoxied to the surface of the rock sample containing cavities drilled into the rock species of interest. The results show that the dark gray species of the Cobourg limestone has a permeability that is roughly one order of magnitude greater than the light gray calcite species.
文摘Wide-bandgap devices,such as silicon-carbide metal-oxide-semiconductor field-effect transistors(MOSFETs)and gallium-nitride high electron mobility transistors(HEMTs),exhibit an excellent figure of merits compared to conventional silicon devices.Challenges of applying such fast switches include accurate extraction and optimization of parasitics especially when 6high-efficiency operation,all of which require the comprehensive understanding of such switch especially its interaction with peripheral circuits.Particularly for the enhancement-mode GaN HEMTs without the intrinsic body diode,when reverse conducting,its high voltage drop causes a high dead-time loss,which has rarely a concern in silicon devices.This paper focuses on 650V/30~60A enhancement-mode GaN HEMTs provided by GaN Systems,analytically models its switching behaviors,summarizes the impact of parasitics and dead time,and applies it in two DC/DC converters.Systematic design rules are generated not only for soft switching but also for hard switching applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019 and 11690042)Science Challenge Projects(Grant No.TZ2018004)。
文摘AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decreased.The threshold voltage shifted positively by approximately 25%and the saturation currents decreased by approximately 14%.Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites,which increased the gate current tunneling probability.According to the pulsed output characteristics,the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation.The time constants of the induced surface traps were mainly less than 10μs.
文摘The noise as an undesired phenomenon often appears in the pulsed eddy current testing(PECT)signal, and it is difficult to recognize the character of the testing signal. One of the most common noises presented in the PECT signal is the Gaussian noise, since it is caused by the testing environment. A new denoising approach based on singular value decomposition(SVD) is proposed in this paper to reduce the Gaussian noise of PECT signal. The approach first discusses the relationship between signal to noise ratio(SNR) and negentropy of PECT signal. Then the Hankel matrix of PECT signal is constructed for noise reduction, and the matrix is divided into noise subspace and signal subspace by a singular valve threshold. Based on the theory of negentropy, the optimal matrix dimension and threshold are chosen to improve the performance of denoising. The denoised signal Hankel matrix is reconstructed by the singular values of signal subspace, and the denoised signal is finally extracted from this matrix. Experiment is performed to verify the feasibility of the proposed approach, and the results indicate that the proposed approach can reduce the Gaussian noise of PECT signal more effectively compared with other existing approaches.
基金supported by the Beijing Natural Science Foundation,China(No.4162030)
文摘The diode-triggered silicon-controlled rectifier(DTSCR) is widely used for electrostatic discharge(ESD) protection in advanced CMOS process owing to its advantages, such as design simplification, adjustable trigger/holding voltage, low parasitic capacitance. However, the multiple-triggering effect in the typical DTSCR device may cause undesirable larger overall trigger voltage, which results in a reduced ESD safe margin. In previous research, the major cause is attributed to the higher current level required in the intrinsic SCR. The related discussions indicate that it seems to result from the current division rule between the intrinsic and parasitic SCR formed in the triggering process. In this letter, inserting a large space into the trigger diodes is proposed to get a deeper insight into this issue. The triggering current is observed to be regularly reduced along with the increased space, which confirms that the current division is determined by the parasitic resistance distributed between the intrinsic and parasitic SCR paths. The theoretical analysis is well confirmed by device simulation and transmission line pulse(TLP) test results. The reduced overall trigger voltage is achieved in the modified DTSCR structures due to the comprehensive result of the parasitic resistance vs triggering current, which indicates a minimized multipletriggering effect.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60871081,60671055,and 60771060)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Nos.20070013002 and 20070013004).
文摘A hardware platform using broadband antenna,oscilloscope,and spectrum analyzer is designed to receive radio frequency(RF)signals from electromagnetic radiation leakage of computers in the office environment.The process of receiving and the processing techniques have also been given.Then,the software radio-based computing models and software algorithms are proposed to demodulate and decode the RF signals.An experimental result shows that the text information can be recovered from electromagnetic(EM)leakage wave of computer by this interception system.This architecture not only reduces the cost of the system’s hardware but also makes interception more flexible.The innovation points of this paper are recovering the video information in EM leakage wave of computers in an ordinary office environment based on public equipments and proposing the process of receiving processing techniques that only use the software radiobased computing models and software algorithms.
基金supported by National Science and Technology Major Project of China(Grant No.2013ZX02303002)
文摘This work presents the design of a novel static-triggered power-rail electrostatic discharge(ESD)clamp circuit. The superior transient-noise immunity of the static ESD detection mechanism over the transient one is firstly discussed. Based on the discussion, a novel power-rail ESD clamp circuit utilizing the static ESD detection mechanism is proposed. By skillfully incorporating a thyristor delay stage into the trigger circuit(TC), the proposed circuit achieves the best ESD-conduction behavior while consuming the lowest leakage current(Ileak) at the normal bias voltage among all investigated circuits in this work. In addition, the proposed circuit achieves an excellent false-triggering immunity against fast power-up pulses. All investigated circuits are fabricated in a 65-nm CMOS process. Performance superiorities of the proposed circuit are fully verified by both simulation and test results. Moreover, the proposed circuit offers an efficient on-chip ESD protection scheme considering the worst discharge case in the utilized process.