Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination...Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.展开更多
The steam ejector is a crucial component in the waste heat recovery system.Its performance determines the amount of recovered heat and system efficiency.However,poor ejector performance has always been the main bottle...The steam ejector is a crucial component in the waste heat recovery system.Its performance determines the amount of recovered heat and system efficiency.However,poor ejector performance has always been the main bottleneck for system applications.Therefore,this study proposes an optimization methodology to improve the steam ejector's performance by utilizing computational fluid dynamics(CFD) techniques,response surface methodology(RSM),and genetic algorithm(GA).Firstly,a homogeneous equilibrium model(HEM) was established to simulate the two-phase flow in the steam ejector.Then,the orthogonal test was presented to the screening of the key decision variables that have a significant impact on the entrainment ratio(ER).Next,the RSM was used to fit a response surface regression model(RSRM).Meanwhile,the effect of the interaction of geometric parameters on the performance of the steam ejector was revealed.Finally,GA was employed to solve the RSRM's global optimal ER value.The results show that the RSRM exhibits a good fit for ER(R^(2)=0.997).After RSM and GA optimization,the maximum ejector efficiency is 27.94%,which is 48.38% higher than the initial ejector of 18.83%.Furthermore,the optimized ejector efficiency is increased by 46.4% on average under off-design conditions.Overall,the results reveal that the combination of CFD,RSM,and GA presents excellent reliability and feasibility in the optimization design of a two-phase steam ejector.展开更多
The volatilization kinetics of antimony trisulfide in steam atmosphere was studied with thermogravimetry at temperatures from 923 to 1123 K. A theoretical model was developed to calculate the overall rate constant and...The volatilization kinetics of antimony trisulfide in steam atmosphere was studied with thermogravimetry at temperatures from 923 to 1123 K. A theoretical model was developed to calculate the overall rate constant and the mass transfer coefficient in gas phases. The experimental results show that the volatilization rate is enhanced with increasing temperature and steam flow rate. The volatilization rate is mainly controlled by the mass transport in gas phases. The apparent activation energy for the process is found to be 59.93 kJ/mol. It is demonstrated that Sb2S3 is dominantly oxidized into Sb2O3 and H2S by water vapor in the volatilization process. Some antimony metal is formed. The reaction mechanism is discussed in accordance with experimental data.展开更多
基金the financial support of the National Key R&D Program of China(No.2019YFC1806000)the Huazhong University of Science and Technology(No.3004013118)+2 种基金support from the National Natural Science Foundation of China(No.51903099)Huazhong University of Science and Technology(No.3004013134)the 100 Talents Program of the Hubei Provincial Government.Z.D.thanks the Postdoctoral Science Foundation of China(No.0106013063).
文摘Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.
文摘The steam ejector is a crucial component in the waste heat recovery system.Its performance determines the amount of recovered heat and system efficiency.However,poor ejector performance has always been the main bottleneck for system applications.Therefore,this study proposes an optimization methodology to improve the steam ejector's performance by utilizing computational fluid dynamics(CFD) techniques,response surface methodology(RSM),and genetic algorithm(GA).Firstly,a homogeneous equilibrium model(HEM) was established to simulate the two-phase flow in the steam ejector.Then,the orthogonal test was presented to the screening of the key decision variables that have a significant impact on the entrainment ratio(ER).Next,the RSM was used to fit a response surface regression model(RSRM).Meanwhile,the effect of the interaction of geometric parameters on the performance of the steam ejector was revealed.Finally,GA was employed to solve the RSRM's global optimal ER value.The results show that the RSRM exhibits a good fit for ER(R^(2)=0.997).After RSM and GA optimization,the maximum ejector efficiency is 27.94%,which is 48.38% higher than the initial ejector of 18.83%.Furthermore,the optimized ejector efficiency is increased by 46.4% on average under off-design conditions.Overall,the results reveal that the combination of CFD,RSM,and GA presents excellent reliability and feasibility in the optimization design of a two-phase steam ejector.
基金This work was supported by the National Natural Science Foundation of China under grant No.59964001.
文摘The volatilization kinetics of antimony trisulfide in steam atmosphere was studied with thermogravimetry at temperatures from 923 to 1123 K. A theoretical model was developed to calculate the overall rate constant and the mass transfer coefficient in gas phases. The experimental results show that the volatilization rate is enhanced with increasing temperature and steam flow rate. The volatilization rate is mainly controlled by the mass transport in gas phases. The apparent activation energy for the process is found to be 59.93 kJ/mol. It is demonstrated that Sb2S3 is dominantly oxidized into Sb2O3 and H2S by water vapor in the volatilization process. Some antimony metal is formed. The reaction mechanism is discussed in accordance with experimental data.