Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be dist...Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.展开更多
The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materi...The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materials under different loading conditions, theoretical and numerical solutions are presented for an elliptic hole in transversely isotropic piezoelectric materials subjected to uniform internal shearing forces based on the complex potential approach. By solving ten variable linear equations, the analytical solutions inside and outside the hole satisfying the permeable electric boundary conditions are obtained. Taking PZT-4 ceramic into consideration, numerical results of electro-elastic fields along the edge of the hole and axes, and the electric displacements in the hole are presented. Comparison with stresses in transverse isotropic elastic materials shows that the hoop stress at the ends of major axis in two kinds of material equals zero for the various ratios of major to minor axis lengths; If the ratio is greater than 1, the hoop stress in piezoelectric materials is smaller than that in elastic materials, and if the ratio is smaller than 1, the hoop stress in piezoelectric materials is greater than that in elastic materials; When it is a circle hole, the shearing stress in two materials along axes is the same. The distribution of electric displacement components shows that the vertical electric displacement in the hole and along axes in the material is always zero though under the permeable electric boundary condition; The horizontal and vertical electric displacement components along the edge of the hole are symmetrical and antisymmetrical about horizontal axis, respectively. The stress and electric displacement distribution tends to zero at distances far from the elliptical hole, which conforms to the conclusion usually made on the basis of Saint-Venant’s principle. Unlike the existing work, uniform shearing forces acting on the edge of the hole, and the distribution of electro-elastic fields inside and outside the elliptic hole are considered.展开更多
A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary...A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary waves are produced by means of gravitational collapse at the layer thickness ratio of 0.2, and the internal periodic waves are produced with rocker-flap wave maker at the layer thickness ratio of 0.93. The wave parameters are obtained through dyeing photography. The vertical cylinders of the same size are arranged in different depths. The horizontal force on each cylinder is measured and the vertical distribution rules are researched. The internal wave heights are changed to study the impact of wave heights on the force. The results show that the horizontal force of concave type internal solitary wave on vertical cylinder in the upper-layer fluid has the same direction as the wave propagating, while it has an opposite direction in the lower-layer. The horizontal force is not evenly distributed in the lower fluid. And the force at different depths increases along with wave height. Internal solitary wave can produce an impact load on the entire pile. The horizontal force of internal periodic waves on the vertical cylinders is periodically changed at the frequency of waves. The direction of the force is opposite in the upper and lower layers, and the value is close. In the upper layer except the depth close to the interface, the force is evenly distributed; but it tends to decrease with the deeper depth in the lower layer. A periodic shear load can be produced on the entire pile by internal periodic waves, and it may cause fatigue damage to structures.展开更多
Both large amplitude depression and elevation internal solitary waves (ISWs) were observed on the continental shelf of the northwest South China Sea (SCS) during the Wenchang Intemal Wave Experiment. In this study...Both large amplitude depression and elevation internal solitary waves (ISWs) were observed on the continental shelf of the northwest South China Sea (SCS) during the Wenchang Intemal Wave Experiment. In this study, we investigate the characteristics of depression and elevation ISWs based on comparisons between observational results and internal wave theories. It is suggested that the large amplitude depression wave is better represented by the extended Korteweg-de Vries (EKdV) theory than by the KdV model, whereas the large amplitude elevation wave is in better agreement with the KdV equation than with the EKdV theory. Wave-induced forces on a supposed small-diameter cylindrical pile by depression and elevation waves are also estimated using the internal wave theory and Morison formula. The wave-induced force by elevation ISWs is rarely reported in the literature. It is found that the force induced by the elevation wave differs significantly fi'om that by the depression wave, and the elevation wave generally produces greater force on the pile in the lower water column than the depression wave. These results show that ISWs in the study area can present a serious threat to ocean engineering structures, and should not be ignored in the design of oil platforms and ocean operations.展开更多
Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation...Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation due to the effect of shear load in plastic bending process. When the tube is bent, the extrados-wall bears the tension stress and the intrados-wall bears the compression stress, synchronously the cross-section is affected by the circumferential stress. According to the above, the distribution function and curve of tangential stress can be obtained according to force balance differential equations on circumferential direction and Trasca rule. Subsequently the real state and virtual state moment equations were established, a new method was presented adopting the virtual principle of deformation system to calculate the x-axis and y-axis displacement of arbitrary point on cross-section. So the major and minor axes of deformed cross-section can be calculated according to the displacements of each point, and the variety value of major and minor axes will be obtained further. Finally the theoretical calculating result is compared with NC tube rotary-bending experiment results to verify the rationality of theoretical analysis, and the cross-section deformation rule of thin-walled tube can be received.展开更多
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure...Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.展开更多
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is dif...For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.展开更多
In recent times, research into mandibular fracture has gained momentum from advances in scanning techniques, software/algorithm developments and improvements, and numerical structural modeling using the finite-element...In recent times, research into mandibular fracture has gained momentum from advances in scanning techniques, software/algorithm developments and improvements, and numerical structural modeling using the finite-element method (FEM). In this work, the FEM is used to model a mandibular fracture (using an inhomogeneous and orthotropic jaw model) simulating the effect of different bite tasks/forces on the stability of the fixated fracture. Specifically, bilateral and unilateral clenches (using muscle data) were studied using a low-profile 3D 4 × 2 hole mini-plate deployed for fracture fixation. Here, the mandible bone was treated as orthotropic and spatially inhomogeneous. Although the results of stress and displacement analyses, for this fixation hardware, indicate sufficient fixation under normal biting conditions, the results show that the unilateral and ipsilateral bites develop, in general, the highest stresses or displacements. Such results can guide post-surgery recommendation on bite behavior.展开更多
The ejector-powered engine simulator(EPES)system is an important piece of equipment in conducting an influence test of the intake and jet flow in low-speed wind tunnels.In this work,through the analysis of the structu...The ejector-powered engine simulator(EPES)system is an important piece of equipment in conducting an influence test of the intake and jet flow in low-speed wind tunnels.In this work,through the analysis of the structure and principle of EPES,three parts of the internal flow force were obtained,namely,the additional resistance before the inlet,the internal flow force in the inlet and the thrust produced by the ejector.On the assumption of one-dimensional isentropic adiabatic flow,the theoretical formulae for calculating the forces were derived according to the measured total pressure,static pressure and total temperature of the internal flow section.Subsequently,a calibration tank was used to calibrate the EPES system.On the basis of the characteristics of the EPES system,the process and method of its calibration were designed in detail,and the model installation interface of the calibration tank was reformed.By applying this method,the repeatability accuracy of the inlet flow rate calibration coefficient was less than0.05%,whereas that of the exhaust flow rate and velocity was less than 0.1%.Upon the application of the calibration coefficients to the correction of the wind tunnel experiment data,the results showed good agreement with the numerical simulation results in terms of regularity and magnitude before stall,which validates the reasonableness and feasibility of the calibration method.Analysis of the calibration data also demonstrated the consistency in the variation law and trend between the theoretical calculation and actual measurement of internal flow force,further reflecting the rationality and feasibility of the theoretical calculation.Nevertheless,the numerical difference was large and further widened with a higher ejection flow rate mainly because of the accuracy of flow measurement and the inhomogeneity of internal flow.The thrust deflection angle of EPES is an important factor in correcting this issue.In particular,the thrust deflection angle becomes larger with small ejection flow and becomes smaller with an increase in flow rate,essentially exhibiting a general change of less than 10°.展开更多
Aimed at the frozen soil arch reinforcement form of upside shed used for the shield machine launching in tunneling the internal force of the structure was calculated with the aid of the structural mechanics theory. Co...Aimed at the frozen soil arch reinforcement form of upside shed used for the shield machine launching in tunneling the internal force of the structure was calculated with the aid of the structural mechanics theory. Considering the space characteristics of the structure, this calculating method is suitable for practical engineering. Moreover, the behavior of the freezing arch reinforcement structure was analyzed combined with an engineering case.展开更多
Nanowires, nanofibers and nanotubes have been widely used as the building blocks in micro/nano-electromechanical systems, energy harvesting or storage devices, and small-scaled measurement equipment. We report that th...Nanowires, nanofibers and nanotubes have been widely used as the building blocks in micro/nano-electromechanical systems, energy harvesting or storage devices, and small-scaled measurement equipment. We report that the sur- face effects of these nanobeams have a great impact on their deflection and internal forces. A simply supported nanobeam is taken as an example. For the displacement and shear force of the nanobeam, its dangerous sections are different from those predicted by the conventional beam theory, but for the bending moment, the dangerous section is the same. Moreover, the values of these three quantities for the nanobeam are all distinct from those calculated from the conventional beam model. These analyses shed new light on the stiffness and strength check of nanobeams, which are beneficial to engineer new-types of nano-materials and nano-devices.展开更多
In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step fu...In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.展开更多
The internal variability of a ten-member ensemble of the regional climate model REMO over Europe is investigated. It is shown that the annual cycle of internal variability behaves differently compared to earlier studi...The internal variability of a ten-member ensemble of the regional climate model REMO over Europe is investigated. It is shown that the annual cycle of internal variability behaves differently compared to earlier studies that focused on other regions. To gain better insight into the dependence of the internal variability on the boundary forcing variability, a circulation type classification is performed on the forcing data. It can be shown that especially in the winter season internal variability is dependent on the circulation type included in the boundary forcing, whereas in the summer season the level and pattern of internal variability is rather independent from the circulation type of the driving field. It is concluded that for Europe the internal variability of REMO in winter is governed by circulation patterns related to the North-Atlantic Oscillation, whereas in summer local processes play a bigger role.展开更多
Human rights, as a great term and lofty goal, have unquestionably become a topic of mainstream talk in the present-day world.2 Such mainstream talk has been internal- ized into part of the social structure. The curren...Human rights, as a great term and lofty goal, have unquestionably become a topic of mainstream talk in the present-day world.2 Such mainstream talk has been internal- ized into part of the social structure. The current international society is experiencing a profound reorganization and transition in values. All kinds of new interactions under the context of globalization have resulted in the development of the current norms of international human rights, which are constructed on the basis of law and ethics. Therefore, analyzing the dynamic factors of socialization that support the operation of human rights norms in international society has become increasingly important in today's mutually dependent society.展开更多
3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
On the basis of Morison's empirical formula and modal separation method in estimating the force and torque exerted by internal solitary waves (ISWs) on a cylindrical pile, it is found that the loads exerted by the ...On the basis of Morison's empirical formula and modal separation method in estimating the force and torque exerted by internal solitary waves (ISWs) on a cylindrical pile, it is found that the loads exerted by the ISWs change largely in different seasons at the same site of the continental shelf in the South China Sea (SCS) even under the condition that the amplitudes of ISWs are the same. Thus, the effect of a seasonal water stratification variation on the force and torque exerted by the ISWs is investigated, and a three-parameter stratification model is employed. It is shown that the loads exerted by the ISWs depend largely on the wa- ter stratification. The stronger the water stratification, the larger the force and the torque; when the depth where the maximum thermocline appears is deepened, the force decreases but the torque increases; when the width of the thermocline is narrowed, the force increases but the torque decreases. The seasonal varia- tion of the force and the torque exerted by the ISWs in four seasons in the SCS is thus explained. Key words: internal solitary waves, force, torque, water stratification, South China Sea展开更多
Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systema...Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
AIM:To introduce a modified technique of internal limiting membrane(ILM)centripetal dragging and peeling to treat idiopathic macular hole(IMH)and to observe the ILM-retina adhesive forces.METHODS:Twenty-six consecutiv...AIM:To introduce a modified technique of internal limiting membrane(ILM)centripetal dragging and peeling to treat idiopathic macular hole(IMH)and to observe the ILM-retina adhesive forces.METHODS:Twenty-six consecutive patients with stage 3 to 4 IMH and followed up at least six months were enrolled.All patients underwent complete par plana vitrectomy,ILM dragging and peeling,fluid and gas exchange,15%C3 F8 tamponade and 2-week prone position.The best corrected visual acuity,macular hole evaluation by optical coherence tomography,and complications were evaluated.RESULTS:The mean diameter of IMH was 524±148μm(range:201-683μm),with 21 cases(80.8%)greater than 400μm.ILM dragging and peeling were successfully performed in all cases.Most of the ILM-retina adhesive forces are severe(42.3%,11/26),followed by mild(38.5%,10/26),and moderate(19.2%,5/26).The mean follow-up duration was 21.2±6.1 mo.The IMH was closed in 25(96.3%)eyes.Visual acuity(logMAR)improved significantly from 1.2±0.6 preoperatively to 0.7±0.5 postoperatively(P<0.001).CONCLUSION:Preexisting ILM-retina adhesive force is found in IMH patients.With assistance of this force,this modified technique may help to release the IMH edges and improve the closure rate of large IMH.展开更多
基金This study is supported by the National Natural Science Foundation of China(Projects under contract Nos.40506007,49676275 and 49976002)the Natural Science Foundation of Shandong Province(No.Y2000E04)Microwave Imaging National Key Laboratory Foundation(No.51442020103JW1002).
文摘Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.
基金supported by Hebei Provincial Natural Science Foundation of China (Grant No. A2011210033)Foundation of Hebei Provincial Education Department of China (Grant No. ZH2011116)Hebei Provincial Research Program for Higher Education and Teaching Reform of China (Grant No. 103024)
文摘The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materials under different loading conditions, theoretical and numerical solutions are presented for an elliptic hole in transversely isotropic piezoelectric materials subjected to uniform internal shearing forces based on the complex potential approach. By solving ten variable linear equations, the analytical solutions inside and outside the hole satisfying the permeable electric boundary conditions are obtained. Taking PZT-4 ceramic into consideration, numerical results of electro-elastic fields along the edge of the hole and axes, and the electric displacements in the hole are presented. Comparison with stresses in transverse isotropic elastic materials shows that the hoop stress at the ends of major axis in two kinds of material equals zero for the various ratios of major to minor axis lengths; If the ratio is greater than 1, the hoop stress in piezoelectric materials is smaller than that in elastic materials, and if the ratio is smaller than 1, the hoop stress in piezoelectric materials is greater than that in elastic materials; When it is a circle hole, the shearing stress in two materials along axes is the same. The distribution of electric displacement components shows that the vertical electric displacement in the hole and along axes in the material is always zero though under the permeable electric boundary condition; The horizontal and vertical electric displacement components along the edge of the hole are symmetrical and antisymmetrical about horizontal axis, respectively. The stress and electric displacement distribution tends to zero at distances far from the elliptical hole, which conforms to the conclusion usually made on the basis of Saint-Venant’s principle. Unlike the existing work, uniform shearing forces acting on the edge of the hole, and the distribution of electro-elastic fields inside and outside the elliptic hole are considered.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279187 and 41174157)the Fundamental Research Funds for the Central Universities(Grant No.201262005)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(Grant No.BS2013HZ014)
文摘A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary waves are produced by means of gravitational collapse at the layer thickness ratio of 0.2, and the internal periodic waves are produced with rocker-flap wave maker at the layer thickness ratio of 0.93. The wave parameters are obtained through dyeing photography. The vertical cylinders of the same size are arranged in different depths. The horizontal force on each cylinder is measured and the vertical distribution rules are researched. The internal wave heights are changed to study the impact of wave heights on the force. The results show that the horizontal force of concave type internal solitary wave on vertical cylinder in the upper-layer fluid has the same direction as the wave propagating, while it has an opposite direction in the lower-layer. The horizontal force is not evenly distributed in the lower fluid. And the force at different depths increases along with wave height. Internal solitary wave can produce an impact load on the entire pile. The horizontal force of internal periodic waves on the vertical cylinders is periodically changed at the frequency of waves. The direction of the force is opposite in the upper and lower layers, and the value is close. In the upper layer except the depth close to the interface, the force is evenly distributed; but it tends to decrease with the deeper depth in the lower layer. A periodic shear load can be produced on the entire pile by internal periodic waves, and it may cause fatigue damage to structures.
基金Supported by the National Natural Science Foundation of China(Nos.41106017,41030855)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX1-YW-12)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK2011396)the National High Technology Research and Development Program of China(863program)(No.2008AA09A401)
文摘Both large amplitude depression and elevation internal solitary waves (ISWs) were observed on the continental shelf of the northwest South China Sea (SCS) during the Wenchang Intemal Wave Experiment. In this study, we investigate the characteristics of depression and elevation ISWs based on comparisons between observational results and internal wave theories. It is suggested that the large amplitude depression wave is better represented by the extended Korteweg-de Vries (EKdV) theory than by the KdV model, whereas the large amplitude elevation wave is in better agreement with the KdV equation than with the EKdV theory. Wave-induced forces on a supposed small-diameter cylindrical pile by depression and elevation waves are also estimated using the internal wave theory and Morison formula. The wave-induced force by elevation ISWs is rarely reported in the literature. It is found that the force induced by the elevation wave differs significantly fi'om that by the depression wave, and the elevation wave generally produces greater force on the pile in the lower water column than the depression wave. These results show that ISWs in the study area can present a serious threat to ocean engineering structures, and should not be ignored in the design of oil platforms and ocean operations.
基金supported by "Eleven Five Years Plan" Basic Research Item of National Defense of China (Grant No. B2220060048)
文摘Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation due to the effect of shear load in plastic bending process. When the tube is bent, the extrados-wall bears the tension stress and the intrados-wall bears the compression stress, synchronously the cross-section is affected by the circumferential stress. According to the above, the distribution function and curve of tangential stress can be obtained according to force balance differential equations on circumferential direction and Trasca rule. Subsequently the real state and virtual state moment equations were established, a new method was presented adopting the virtual principle of deformation system to calculate the x-axis and y-axis displacement of arbitrary point on cross-section. So the major and minor axes of deformed cross-section can be calculated according to the displacements of each point, and the variety value of major and minor axes will be obtained further. Finally the theoretical calculating result is compared with NC tube rotary-bending experiment results to verify the rationality of theoretical analysis, and the cross-section deformation rule of thin-walled tube can be received.
文摘Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.
文摘For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
文摘In recent times, research into mandibular fracture has gained momentum from advances in scanning techniques, software/algorithm developments and improvements, and numerical structural modeling using the finite-element method (FEM). In this work, the FEM is used to model a mandibular fracture (using an inhomogeneous and orthotropic jaw model) simulating the effect of different bite tasks/forces on the stability of the fixated fracture. Specifically, bilateral and unilateral clenches (using muscle data) were studied using a low-profile 3D 4 × 2 hole mini-plate deployed for fracture fixation. Here, the mandible bone was treated as orthotropic and spatially inhomogeneous. Although the results of stress and displacement analyses, for this fixation hardware, indicate sufficient fixation under normal biting conditions, the results show that the unilateral and ipsilateral bites develop, in general, the highest stresses or displacements. Such results can guide post-surgery recommendation on bite behavior.
基金supported by the funda-mental research the Funds of China Aerodynamics Research and Development Center
文摘The ejector-powered engine simulator(EPES)system is an important piece of equipment in conducting an influence test of the intake and jet flow in low-speed wind tunnels.In this work,through the analysis of the structure and principle of EPES,three parts of the internal flow force were obtained,namely,the additional resistance before the inlet,the internal flow force in the inlet and the thrust produced by the ejector.On the assumption of one-dimensional isentropic adiabatic flow,the theoretical formulae for calculating the forces were derived according to the measured total pressure,static pressure and total temperature of the internal flow section.Subsequently,a calibration tank was used to calibrate the EPES system.On the basis of the characteristics of the EPES system,the process and method of its calibration were designed in detail,and the model installation interface of the calibration tank was reformed.By applying this method,the repeatability accuracy of the inlet flow rate calibration coefficient was less than0.05%,whereas that of the exhaust flow rate and velocity was less than 0.1%.Upon the application of the calibration coefficients to the correction of the wind tunnel experiment data,the results showed good agreement with the numerical simulation results in terms of regularity and magnitude before stall,which validates the reasonableness and feasibility of the calibration method.Analysis of the calibration data also demonstrated the consistency in the variation law and trend between the theoretical calculation and actual measurement of internal flow force,further reflecting the rationality and feasibility of the theoretical calculation.Nevertheless,the numerical difference was large and further widened with a higher ejection flow rate mainly because of the accuracy of flow measurement and the inhomogeneity of internal flow.The thrust deflection angle of EPES is an important factor in correcting this issue.In particular,the thrust deflection angle becomes larger with small ejection flow and becomes smaller with an increase in flow rate,essentially exhibiting a general change of less than 10°.
基金Project 2002CB412704 supported by The National 973 Item
文摘Aimed at the frozen soil arch reinforcement form of upside shed used for the shield machine launching in tunneling the internal force of the structure was calculated with the aid of the structural mechanics theory. Considering the space characteristics of the structure, this calculating method is suitable for practical engineering. Moreover, the behavior of the freezing arch reinforcement structure was analyzed combined with an engineering case.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11672334,11672335 and 11611530541the Fundamental Research Funds for the Central Universities under Grant No 15CX08004A
文摘Nanowires, nanofibers and nanotubes have been widely used as the building blocks in micro/nano-electromechanical systems, energy harvesting or storage devices, and small-scaled measurement equipment. We report that the sur- face effects of these nanobeams have a great impact on their deflection and internal forces. A simply supported nanobeam is taken as an example. For the displacement and shear force of the nanobeam, its dangerous sections are different from those predicted by the conventional beam theory, but for the bending moment, the dangerous section is the same. Moreover, the values of these three quantities for the nanobeam are all distinct from those calculated from the conventional beam model. These analyses shed new light on the stiffness and strength check of nanobeams, which are beneficial to engineer new-types of nano-materials and nano-devices.
文摘In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.
文摘The internal variability of a ten-member ensemble of the regional climate model REMO over Europe is investigated. It is shown that the annual cycle of internal variability behaves differently compared to earlier studies that focused on other regions. To gain better insight into the dependence of the internal variability on the boundary forcing variability, a circulation type classification is performed on the forcing data. It can be shown that especially in the winter season internal variability is dependent on the circulation type included in the boundary forcing, whereas in the summer season the level and pattern of internal variability is rather independent from the circulation type of the driving field. It is concluded that for Europe the internal variability of REMO in winter is governed by circulation patterns related to the North-Atlantic Oscillation, whereas in summer local processes play a bigger role.
文摘Human rights, as a great term and lofty goal, have unquestionably become a topic of mainstream talk in the present-day world.2 Such mainstream talk has been internal- ized into part of the social structure. The current international society is experiencing a profound reorganization and transition in values. All kinds of new interactions under the context of globalization have resulted in the development of the current norms of international human rights, which are constructed on the basis of law and ethics. Therefore, analyzing the dynamic factors of socialization that support the operation of human rights norms in international society has become increasingly important in today's mutually dependent society.
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020201the National Basic Research Program of China under contract Nos 2011CB013701 and 2013CB956101+2 种基金the National Natural Science Foundation of China(NSFC)under contract No.41025019the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.SQ201302LTO Independent Research Program under contract No.LTOZZ1304
文摘On the basis of Morison's empirical formula and modal separation method in estimating the force and torque exerted by internal solitary waves (ISWs) on a cylindrical pile, it is found that the loads exerted by the ISWs change largely in different seasons at the same site of the continental shelf in the South China Sea (SCS) even under the condition that the amplitudes of ISWs are the same. Thus, the effect of a seasonal water stratification variation on the force and torque exerted by the ISWs is investigated, and a three-parameter stratification model is employed. It is shown that the loads exerted by the ISWs depend largely on the wa- ter stratification. The stronger the water stratification, the larger the force and the torque; when the depth where the maximum thermocline appears is deepened, the force decreases but the torque increases; when the width of the thermocline is narrowed, the force increases but the torque decreases. The seasonal varia- tion of the force and the torque exerted by the ISWs in four seasons in the SCS is thus explained. Key words: internal solitary waves, force, torque, water stratification, South China Sea
基金Supported by Foundation for High-level Talents in Higher Education of Guangdong,China (Grant No.501111018)Panyu District Science and Technology Program of China (Grant No.2009-Z-53-1)
文摘Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金Supported by the National Natural Science Foundation of China(No.81470642No.81770964)the Science and Technology Commission of Shanghai Municipality(No.17411952900)。
文摘AIM:To introduce a modified technique of internal limiting membrane(ILM)centripetal dragging and peeling to treat idiopathic macular hole(IMH)and to observe the ILM-retina adhesive forces.METHODS:Twenty-six consecutive patients with stage 3 to 4 IMH and followed up at least six months were enrolled.All patients underwent complete par plana vitrectomy,ILM dragging and peeling,fluid and gas exchange,15%C3 F8 tamponade and 2-week prone position.The best corrected visual acuity,macular hole evaluation by optical coherence tomography,and complications were evaluated.RESULTS:The mean diameter of IMH was 524±148μm(range:201-683μm),with 21 cases(80.8%)greater than 400μm.ILM dragging and peeling were successfully performed in all cases.Most of the ILM-retina adhesive forces are severe(42.3%,11/26),followed by mild(38.5%,10/26),and moderate(19.2%,5/26).The mean follow-up duration was 21.2±6.1 mo.The IMH was closed in 25(96.3%)eyes.Visual acuity(logMAR)improved significantly from 1.2±0.6 preoperatively to 0.7±0.5 postoperatively(P<0.001).CONCLUSION:Preexisting ILM-retina adhesive force is found in IMH patients.With assistance of this force,this modified technique may help to release the IMH edges and improve the closure rate of large IMH.