期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of Air Gap under Fabric on Thermal Protective Performance Using an Improved Apparatus 被引量:1
1
作者 李小辉 卢业虎 +2 位作者 周亮 李俊 王云仪 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期595-598,共4页
The bench top test is one of the most important and effective methods to evaluate the total thermal protective performance(TPP) of firefighters' protective clothing,which is greatly influenced by the air gaps entr... The bench top test is one of the most important and effective methods to evaluate the total thermal protective performance(TPP) of firefighters' protective clothing,which is greatly influenced by the air gaps entrapped.In this paper,to investigate the effect of air gap width on TPP,a new improved apparatus with two height changeable buttons to hold the thermal sensor was developed to get a series of air gap sizes from 0 mm to 40 mm.The TPP of two types of flame-resistant outer fabrics was measured with TPP test apparatus respectively.Analysis of temperature rise with each air gap width was made to determine the effects of different air gaps on protective performance.It was indicated that air gap size had great effect on TPP of fabrics in the bench top test.An air gap width above 8 mm was suggested for the thermal protective clothing design. 展开更多
关键词 air gap thermal protective performance(TPP) bench top test firefig hter’s protective clothing
下载PDF
Modeling Thermal Protective Performance of Multilayer Fabrics for Firefighters
2
作者 崔志英 杨海燕 《Journal of Donghua University(English Edition)》 EI CAS 2011年第3期271-274,共4页
This paper is to report a prediction model for thermal protective performance of multilayer fabrics based on Matlab neural network toolbox. Then a back propagation (BP) neural network model is developed to predict the... This paper is to report a prediction model for thermal protective performance of multilayer fabrics based on Matlab neural network toolbox. Then a back propagation (BP) neural network model is developed to predict thermal protective performance of multilayer fabrics for firefighters. The network consists of twelve input nodes, six hidden nodes, and one output node. The inputs are weight, thickness, density of warp and weft, limited oxygen index (LOI), and heat conductivity of each-layer fabric. Thermal protective performance (TPP) rating of multilayer fabrics is the output. In this paper, the data from the experiments are used as learning information for the neural network to develop a reliable prediction model. Finnally the model performance is verified, and the proposed model can be applied to predict the thermal protective performance of multilayer fabrics for firefighters. 展开更多
关键词 firefighter clothing prediction model thermal protective performance(TPP) multilayer fabric BP neural network
下载PDF
Effect of Phase Change Materials on the Thermal Protective Performance of the Multi-layered Fabrics Examined by TPP Tester under Flash Fire 被引量:1
3
作者 赵蒙蒙 李俊 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期150-154,共5页
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o... Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance. 展开更多
关键词 phase change material(PCM) multi-layered fabrics thermal protection performance(TPP) fire fighter protective clothing
下载PDF
Air plasma-sprayed high-entropy (Y_(0.2)Yb_(0.2)Lu_(0.2)Eu_(0.2)Er_(0.2))_(3)Al_(5)O_(12) coating with high thermal protection performance 被引量:5
4
作者 Kailun WANG Jinpeng ZHU +10 位作者 Hailong WANG Kaijun YANG Yameng ZHU Yubin QING Zhuang MA Lihong GAO Yanbo LIU Sihao WEI Yongchun SHU Yanchun ZHOU Jilin HE 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第10期1571-1582,共12页
High-entropy rare-earth aluminate(Y_(0.2)Yb_(0.2)Lu_(0.2)Eu_(0.2)Er_(0.2))_(3)Al_(5)O_(12)(HE-RE_(3)Al_(5)O_(12))has been considered as a promising thermal protection coating(TPC)material based on its low thermal cond... High-entropy rare-earth aluminate(Y_(0.2)Yb_(0.2)Lu_(0.2)Eu_(0.2)Er_(0.2))_(3)Al_(5)O_(12)(HE-RE_(3)Al_(5)O_(12))has been considered as a promising thermal protection coating(TPC)material based on its low thermal conductivity and close thermal expansion coefficient to that of Al2O3.However,such a coating has not been experimentally prepared,and its thermal protection performance has not been evaluated.To prove the feasibility of utilizing HE-RE_(3)Al_(5)O_(12) as a TPC,HE-RE_(3)Al_(5)O_(12) coating was deposited on a nickelbased superalloy for the first time using the atmospheric plasma spraying technique.The stability,surface,and cross-sectional morphologies,as well as the fracture surface of the HE-RE_(3)Al_(5)O_(12) coating were investigated,and the thermal shock resistance was evaluated using the oxyacetylene flame test.The results show that the HE-RE_(3)Al_(5)O_(12) coating can remain intact after 50 cycles at 1200℃ for 200 s,while the edge peeling phenomenon occurs after 10 cycles at 1400℃ for 200 s.This study clearly demonstrates that HE-RE_(3)Al_(5)O_(12) coating is effective for protecting the nickel-based superalloy,and the atmospheric plasma spraying is a suitable method for preparing this kind of coatings. 展开更多
关键词 high-entropy ceramics thermal protection coating(TPC) (Y_(0.2)Yb_(0.2)Lu_(0.2)Eu_(0.2)Er_(0.2))_(3)Al_(5)O_(12)(HE-RE_(3)Al_(5)O_(12)) air plasma spraying thermal protection performance
原文传递
Multiphase reaction spinning of high-temperature resistant weavable SiO_(2)-Kevlar hybrid aerogel fibers
5
作者 Yunna Chen Wenlu Zhang +2 位作者 Qingyang Li Wenbin Li Chong He 《Nano Research》 SCIE EI 2025年第1期424-433,共10页
Advanced aerogel fibers possess numerousadvantages amalgamating the attributes of aerogels and fibermaterials, rendering them invaluable in the realm of thermalmanagement and regulation. However, the achievement ofrob... Advanced aerogel fibers possess numerousadvantages amalgamating the attributes of aerogels and fibermaterials, rendering them invaluable in the realm of thermalmanagement and regulation. However, the achievement ofrobust mechanical properties and increased temperaturestability is still a major challenge for the majority of aerogelfibers. Herein, SiO_(2)-Kevlar hybrid aerogel fibers with bioniccore-shell structure were prepared by reaction spinning andweaved into fabric. Kevlar nanowires dispersion is pumpedinto a bath comprising a self-synthesized silica sol, whichfacilitates the hybridization of biphasic aerogels through thegel reaction. Precise control over the diameter (200-800 μm)and structure of the wet gel fibers was achieved throughmeticulous adjustment of the spinning solution composition and spinning parameters. Subsequent freeze-drying processfacilitates the formation of a core-shell hybrid structure, in which the SiO_(2) aerogel layer effectively encapsulate the Kevlaraerogel core fiber. Taking full advantage of the mechanical properties of the Kevlar core fiber, the resulting SiO_(2)-Kevlaraerogel fibers exhibit commendable weaving characteristics (51.8 MPa). Furthermore, SiO_(2)-Kevlar aerogel fabrics exhibitenhanced thermal insulation characteristics with a thermal conductivity of 0.037 W/(m·K). As a result of the presence ofexternal SiO_(2) aerogel layer, the overall temperature resistance performance of the SiO_(2)-Kevlar fabric reach up to 700 ℃. 展开更多
关键词 aerogel fibers SiO_(2)aerogel Kevlar aerogel reaction spinning thermal protective performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部