期刊文献+
共找到214,323篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling and Analysis of Airlift System Operating in Three-Phase Flow 被引量:6
1
作者 胡东 康勇 +1 位作者 唐川林 王晓川 《China Ocean Engineering》 SCIE EI CSCD 2015年第1期121-132,共12页
Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the perfo... Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes. 展开更多
关键词 airlift pump momentum theorem three-phase flow volumetric flux relative error
下载PDF
Flux vector splitting solutions for coupling hydraulic transient of gas-liquid-solid three-phase flow in pipelines 被引量:3
2
作者 陈明 焦光伟 +1 位作者 邓松圣 王建华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期811-822,共12页
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in... The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability. 展开更多
关键词 gas-liquid-solid three-phase flow fluid-structure interaction hydraulic transient flux vector splitting second-order precision
下载PDF
Attractor comparison analysis for characterizing vertical upward oil gas water three-phase flow 被引量:1
3
作者 赵俊英 金宁德 +2 位作者 高忠科 杜萌 王振亚 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期361-368,共8页
We investigate the dynamic characteristics of oil-gas-water three-phase flow in terms of chaotic attractor comparison. In particular, we extract a statistic to characterize the dynamical difference in attractor probab... We investigate the dynamic characteristics of oil-gas-water three-phase flow in terms of chaotic attractor comparison. In particular, we extract a statistic to characterize the dynamical difference in attractor probability distribution. We first take time series from Logistic chaotic system with different parameters as examples to demonstrate the effectiveness of the method. Then we use this method to investigate the experimental signals from oil-gas-water three-phase flow. The results indicate that the extracted statistic is very sensitive to the change of flow parameters and can gain a quantitatively insight into the dynamic characteristics of different flow patterns. 展开更多
关键词 oil-gas-water three-phase flow fluid dynamics attractor comparison
下载PDF
Modeling and simulation of non-isothermal three-phase flow for accurate prediction in underbalanced drilling
4
作者 FALAVAND-JOZAEI A HAJIDAVALLOO E +1 位作者 SHEKARI Y GHOBADPOURI S 《Petroleum Exploration and Development》 CSCD 2022年第2期406-414,共9页
The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition.... The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition. Gas-liquid-solid three-phase flow model considering transient thermal interaction with the formation was applied to simulate wellbore fluid to calculate the wellbore temperature and pressure and analyze the influence of different parameters on fluid pressure and temperature distribution in annulus. The results show that the non-isothermal three-phase flow model with thermal consideration gives more accurate prediction of bottom-hole pressure(BHP) compared to other models considering geothermal temperature. Viscous dissipation, the heat produced by friction between the rotating drilling-string and well wall and drill bit drilling, and influx of oil and gas from reservoir have significant impact on the distribution of fluid temperature in the wellbore, which in turn affects the BHP. Bottom-hole fluid temperature decreases with increasing liquid flow rate, circulation time, and specific heat of liquid and gas but it increases with increasing in gas flow rate. It was found that BHP is strongly depended on the gas and liquid flow rates but it has weak dependence on the circulation time and specific heat of liquid and gas. BHP increase with increasing liquid flow rate and decreases with increasing gas flow rate. 展开更多
关键词 under-balanced drilling bottom-hole pressure fluid temperature CUTTINGS three-phase flow model temperature profile wellbore heat transfer
下载PDF
Analysis of the flow pattern and periodicity of gas–liquid–liquid three-phase flow in a countercurrent mixer-settler
5
作者 Minghang Zhang Wangfeng Cai +2 位作者 Pei Zhu Le Xie Yan Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期135-145,共11页
In contrast to the concurrent mixer-settler,the interaction between the mixing and settling chambers have to be taken into account in the simulation of the countercurrent mixer-settler,and no work has been reported fo... In contrast to the concurrent mixer-settler,the interaction between the mixing and settling chambers have to be taken into account in the simulation of the countercurrent mixer-settler,and no work has been reported for this equipment.In this work,a three-phase flow model based on the Eulerian multiphase model,coupled with a sliding mesh model is proposed for a countercurrent mixer-settler.Based on this,the dispersed phase distribution,flow pattern,and pressure distribution are investigated,which can help to fill the gap in the operation mechanism.In addition,the velocity vector distribution at the phase port shows an intriguing phenomenon that two types of vectors with opposite directions are distributed on the left and right sides of the same plane,which indicates that the material exchange in the mixing and settling chambers is simultaneous.Analysis of this variation at this location by a fast Fourier transform(FFT)method reveals that it is mainly influenced by the mixing chamber and is consistent with the main period of the outlet flow fluctuations.Therefore,by monitoring the fluctuation of the outlet flow and then analyzing it by the FFT method,the state of the whole tank can be determined,which makes it promising for the design of control systems for countercurrent mixer-settlers. 展开更多
关键词 Countercurrent mixer-settler three-phase flow Sliding mesh model(SMM) Fast Fourier transform(FFT)
下载PDF
Three-phase flow of submarine gas hydrate pipe transport 被引量:6
6
作者 李立 徐海良 杨放琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3650-3656,共7页
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p... In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline. 展开更多
关键词 海底天然气水合物 管道输送 三相流动 欧拉模型 气固两相流 固液两相流 数值模拟 模型模拟
下载PDF
Classification of Oil-Gas-Water Three-Phase Flow in a Pipeline Based on BP Neural Network Analysis
7
作者 Wenjing Lu Peng Li Xuhui Zhang 《Journal of Data Analysis and Information Processing》 2022年第4期185-197,共13页
The flow pattern in a pipeline is a very important topic in petroleum exploitation. This paper is to classify the flow pattern of oil-gas-water flow in a pipeline by using BP neural network. The effects of different p... The flow pattern in a pipeline is a very important topic in petroleum exploitation. This paper is to classify the flow pattern of oil-gas-water flow in a pipeline by using BP neural network. The effects of different parameter combinations are investigated to find the most important ones. It is shown that BP neural network can be used in the analysis of the flow pattern of three-phase flow in pipelines. In most cases, the mean square error is large for the horizontal pipes. The optimized neuron number of the middle layer changes with conditions. So, we must changes the neuron number of the middle layer in simulation for any conditions to seek the best results. These conclusions can be taken as references for further study of the flow pattern of oil-gas-water in a pipeline. 展开更多
关键词 BP Neural Network flow Pattern Two-Phase flow Dimensionless Controlling Parameters
下载PDF
Current optimization-based control of dual three-phase PMSM for low-frequency temperature swing reduction
8
作者 Linlin Lu Xueqing Wang +3 位作者 Luhan Jin Qiong Liu Yun Zhang Yao Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期238-246,共9页
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur... In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction. 展开更多
关键词 Dual three-phase PMSM Low-frequency temperature swing Copper loss Current optimization Connected neutral points
下载PDF
EXPERIMENTAL AND NUMERICAL SIMULATION OF THREE-PHASE FLOW IN AN AERATION TANK 被引量:4
9
作者 ChengWen ZhouXiao-de +3 位作者 SongCe MinTao MuraiYuichi YamamotoFujio 《Journal of Hydrodynamics》 SCIE EI CSCD 2003年第4期118-123,共6页
Aeration plays an important role in the treatment of activated sludge due tothe interactions among bubbles, sewage and activated sludge in an aeration tank. The aerationperformance is directly concerned with the effic... Aeration plays an important role in the treatment of activated sludge due tothe interactions among bubbles, sewage and activated sludge in an aeration tank. The aerationperformance is directly concerned with the efficiency of sewage disposal. So the three-dimensionaltwo-fluid model was established with emphasis on the phase interaction terms in this paper. Thismodel, as an extension of the two-phase flow model, involved the motion laws of three-phases, andwas compared with experimental studies. The finite volume method was used in the numericalsimulation of gas-liquid two-phase flow and gas-liquid-solid three-phase flow. In order to discussthe influence of gas-phase, liquid-phase and solid-phase motions in an aeration tank on the sewagedisposal, three kinds of boundary and initial conditions were adopted. The simulated results of theflow structure show qualitatively good agreement with the experimental data. And the theoreticalbasis for designing the best aeration tank was discussed according to the simulated results. 展开更多
关键词 aeration tank three-phase flow numerical simulation
原文传递
On large scale CFD-DEM simulation for gas-liquid-solid,three-phase flows 被引量:1
10
作者 Kimiaki Washino Ei L.Chan +2 位作者 Tetsushi Kaji Yoshiaki Matsuno Toshitsugu Tanaka 《Particuology》 SCIE EI CAS CSCD 2021年第6期2-15,共14页
Particulate flows in a mixture of gas and liquid,i.e.gas-liquid-solid three-phase flows,are frequently encountered both in nature and industry.In such flows,complex interactions between multiple phases,i.e.particle-pa... Particulate flows in a mixture of gas and liquid,i.e.gas-liquid-solid three-phase flows,are frequently encountered both in nature and industry.In such flows,complex interactions between multiple phases,i.e.particle-particle interactions,fluid-particle interactions and interfacial interactions(such as surface tension and particle wetting),play a crucial role.In literature,simulations of three-phase flows are sometimes performed by incorporating interface capturing methods(e.g.VOF method)into the CFD-DEM coupling model.However,it is practically impossible to perform large(industrial)scale simulation because of the high computational cost.One of the strategies often employed to reduce the computational cost in CFD-DEM is to upscale particle size,which is applied mainly to particle single-phase and fluid-solid two-phase flows.The present work is focused on the scaled-up particle model for gas-liquid-solid three-phase flows.The interaction forces between multiple phases are scaled using the general criteria derived from the continuum assumption of particulate flow.A colour function based interface-capturing method with improved interface smoothness is developed,and the diffusion based coarse graining is employed to ensure sufficient space resolution in CFD even when particle size is increased.It is shown that the model developed is capable of predicting the both particles and fluid behaviour in the original system. 展开更多
关键词 CFD-DEM three-phase flow Scaled-up particle Surface tension and wetting
原文传递
Modeling of Three-Phase Flow and Interface Deformation of Metal/Bath in Aluminum Reduction Cell With Cathode Protrusion
11
作者 WANG Qiang WANG Fang +1 位作者 LI Bao-kuan FENG Nai-xiang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第S1期59-62,共4页
Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed t... Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed to study the impact of the novel cathode protrusion on the molten fluid motion as well as the metal-bath interface deformation.The molten fluid motion in the aluminum reduction ceils is under the combined effect of the electro-magnetic forces(EMFs)and the gas bubbles generated at the anode.A transient inhomogeneous three-phase model(metal-bath-gas bubble)was established in order to calculate more accurate.The results indicate that the metal-bath interface deformation can be reduced significantly by the novel cathode protrusion which is beneficial to the electric energy saving.Besides,The EMFs decreases as a result of the optimizing of the magnetic field due to the novel cathode convex which is an important driving force for the deformation of the interface.In addition,large vortex in the metal flow field is break up into the small vortex by the cathode protrusion and then dissipated due to the viscous force and the hindering effect of the cathode protrusion.The quantity of the vortex as well as the strength of the vortex reduces significantly in the reduction cell with novel cathode protrusion. 展开更多
关键词 aluminum reduction cell novel cathode protrusion inhomogeneous three-phase flow interface deformation electro-magnetic forces VORTEX
原文传递
Combination of a gamma radiation-based system and the adaptive network-based fuzzy inference system(ANFIS)for calculating the volume fraction in stratified regime of a three-phase flow
12
作者 G.H.Roshani A.Karami E.Nazemi 《Radiation Detection Technology and Methods》 2018年第2期47-59,共13页
Background Understanding the volume fraction of water-oil-gas three-phase flow is of significant importance in oil and gas industry.Purpose The current research attempts to indicate the ability of adaptive network-bas... Background Understanding the volume fraction of water-oil-gas three-phase flow is of significant importance in oil and gas industry.Purpose The current research attempts to indicate the ability of adaptive network-based fuzzy inference system(ANFIS)to forecast the volume fractions in a water-oil-gas three-phase flow system.Method The current investigation devotes to measure the volume fractions in the stratified three-phase flow,on the basis of a dual-energy metering system consisting of the 152Eu and 137Cs and one NaI detector using ANFIS.The summation of volume fractions is equal to 100%and is also a constant,and this is enough for the ANFIS just to forecast two volume fractions.In the paper,three ANFIS models are employed.The first network is applied to forecast the oil and water volume fractions.The next to forecast the water and gas volume fractions,and the last to forecast the gas and oil volume fractions.For the next step,ANFIS networks are trained based on numerical simulation data from MCNP-X code.Results The accuracy of the nets is evaluated through the calculation of average testing error.The average errors are then compared.The model in which predictions has the most consistency with the numerical simulation results is selected as the most accurate predictor model.Based on the results,the best ANFIS net forecasts the water and gas volume fractions with the mean error of less than 0.8%.Conclusion The proposed methodology indicates that ANFIS can precisely forecast the volume fractions in a water-oil-gas three-phase flow system. 展开更多
关键词 Stratified regime three-phase flow Volume fraction ACCURACY Fuzzy-based inference system FORECAST
原文传递
Operator Splitting for Three-Phase Flow in Heterogeneous Porous Media
13
作者 E.Abreu J.Douglas +1 位作者 F.Furtado F.Pereira 《Communications in Computational Physics》 SCIE 2009年第6期72-84,共13页
We describe an operator splitting technique based on physics rather than on dimension for the numerical solution of a nonlinear system of partial differential equations which models three-phase flow through heterogene... We describe an operator splitting technique based on physics rather than on dimension for the numerical solution of a nonlinear system of partial differential equations which models three-phase flow through heterogeneous porous media.The model for three-phase flow considered in this work takes into account capillary forces,general relations for the relative permeability functions and variable porosity and permeability fields.In our numerical procedure a high resolution,nonoscillatory,second order,conservative central difference scheme is used for the approximation of the nonlinear system of hyperbolic conservation laws modeling the convective transport of the fluid phases.This scheme is combined with locally conservative mixed finite elements for the numerical solution of the parabolic and elliptic problems associated with the diffusive transport of fluid phases and the pressure-velocity problem.This numerical procedure has been used to investigate the existence and stability of nonclassical shock waves(called transitional or undercompressive shock waves)in two-dimensional heterogeneous flows,thereby extending previous results for one-dimensional flow problems.Numerical experiments indicate that the operator splitting technique discussed here leads to computational efficiency and accurate numerical results. 展开更多
关键词 Operator splitting three-phase flow heterogeneous porous media central differencing schemes mixed finite elements
原文传递
4D-Flow MRI在肥厚型心肌病左室流出道血流评估中的价值探索
14
作者 徐晶 陈秀玉 +3 位作者 尹刚 闫伟鹏 陆敏杰 赵世华 《磁共振成像》 CAS CSCD 北大核心 2024年第3期56-61,共6页
目的 探索四维血流(four-dimensional flow,4D-Flow)磁共振成像(magnetic resonance imaging,MRI)技术在左心室腔内应用的可行性。材料与方法 本研究为前瞻性、横断面研究,纳入2022年8月至2023年1月于我院接受心脏MRI检查的21例肥厚型... 目的 探索四维血流(four-dimensional flow,4D-Flow)磁共振成像(magnetic resonance imaging,MRI)技术在左心室腔内应用的可行性。材料与方法 本研究为前瞻性、横断面研究,纳入2022年8月至2023年1月于我院接受心脏MRI检查的21例肥厚型心肌病患者,采用3.0 T MRI扫描仪进行二维血流(tow-dimensional flow,2D-Flow)及4D-Flow成像,收集患者一周内进行的超声心动图检查结果。采用组内相关系数(inter-class correlation coefficient,ICC)、变异系数(coefficients of variation,COV)及Bland-Altman分析比较2D-Flow、4D-Flow评估左室流出道峰值流速的可重复性及一致性,并通过Pearson相关性分析探究二者与超声心动图测量结果的关系。结果 2D-Flow和4D-Flow观察者内/观察者间的ICC分别为0.999/0.999和0.995/0.992,COV分别为0.5%/0.5%和2.4%/2.6%。4D-Flow与超声心动图的测量结果呈中度相关,相关系数r值为0.574(P=0.006),但一致性较差,ICC为0.375(P=0.013)。2D-Flow与4D-Flow和超声心动图间无显著的一致性及相关性。结论 4D-Flow技术能够可视化心腔内血流模式,对左室流出道峰值流速的测量具有高度可重复性,且与超声心动图的测量结果具有显著的一致性。 展开更多
关键词 肥厚型心肌病 四维血流 二维血流 心脏磁共振 磁共振成像
下载PDF
Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions 被引量:1
15
作者 Yanzheng He Sisi Liu +3 位作者 Mengfan Wang Qiyang Cheng Tao Qian Chenglin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期302-323,I0008,共23页
As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen e... As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions. 展开更多
关键词 three-phase reaction Surface reactions Mass diffusion Electron transfer Gas-involved electrochemical reactions
下载PDF
Speed Regulation Method Using Genetic Algorithm for Dual Three-phase Permanent Magnet Synchronous Motors 被引量:1
16
作者 Xiuhong Jiang Yuying Wang Jiarui Dong 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期171-178,共8页
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the... Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller. 展开更多
关键词 Dual three-phase permanent magnet synchronous motor Genetic algorithm PI control Speed regulation
下载PDF
肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性研究
17
作者 胡勤勤 姜阳 +3 位作者 张玉龙 方玉 梁仁容 杨华 《中国中医急症》 2024年第6期982-985,989,共5页
目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬... 目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬化患者分布情况,观察门静脉系统(门静脉主干、脾静脉、肠系膜上静脉)的血流动力学参数,包括血流量、流速、壁剪切力等,比较不同证型患者门静脉血流动力学参数差异。结果肝硬化代偿期以肝气郁结证、湿热蕴结证为主,肝硬化失代偿期以脾肾阳虚、瘀血络阻证为主;A级以肝气郁结证、湿热蕴结证为主,B、C级以瘀血络阻证为主。瘀血络阻证肝硬化患者门静脉主干及脾静脉血流量明显高于肝气郁结证、湿热蕴结证患者(P<0.05);脾肾阳虚证门静脉主干血流量明显高于肝气郁结证肝硬化患者(P<0.05);瘀血络阻证肝硬化患者门静脉主干流速及剪切力较肝气郁结证和湿热蕴结证低。结论肝硬化患者中医辨证分型与门静脉血流动力学参数具有一定相关性,4D flow MRI可为肝硬化的中医辨证提供血流动力学参考。 展开更多
关键词 肝硬化 4D flow MRI 血流动力学 中医证型
下载PDF
Automatic measurement of three-phase contact angles in pore throats based on digital images
18
作者 ZANG Chuanzhen WANG Lida +3 位作者 ZHOU Kaihu YU Fuwei JIANG Hanqiao LI Junjian 《Petroleum Exploration and Development》 SCIE 2023年第2期442-449,共8页
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood... With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil. 展开更多
关键词 microfluidic model water flooding experiment digital image processing three-phase contact angle measure-ment method flow regime of the remaining oil
下载PDF
基于 Moldflow 的汽车中控台框架翘曲变形分析及优化
19
作者 刘巨保 黄建军 +3 位作者 杨明 李峰 张亮 查翔 《塑料工业》 CAS CSCD 北大核心 2024年第3期83-88,共6页
以某汽车中控台框架为研究对象,测量试模样品发现其翘曲变形量超过了装配要求。通过Moldflow软件模拟了该塑件实际的注塑过程,翘曲变形量的模拟值与实测平均值的最大误差为5.98%,发现该塑件翘曲变形的主要因素为冷却不均和收缩不均。本... 以某汽车中控台框架为研究对象,测量试模样品发现其翘曲变形量超过了装配要求。通过Moldflow软件模拟了该塑件实际的注塑过程,翘曲变形量的模拟值与实测平均值的最大误差为5.98%,发现该塑件翘曲变形的主要因素为冷却不均和收缩不均。本文在原物料中添加质量分数为25%的玻璃纤维以及优化工艺参数后,翘曲变形量的模拟值与初始方案相比降低了86.22%。试模验证表明,优化后的翘曲变形量模拟值与实测平均值的最大误差为4.35%,证明了Moldflow软件模拟分析的准确性。试模后各检测点的最大翘曲变形量降到了1.6 mm以下,较优化之前降低了80%以上,为类似大型复杂注塑件的翘曲变形分析及优化提供了思路。 展开更多
关键词 注塑成型 中控台框架 翘曲变形 模流分析 玻璃纤维
下载PDF
Optimization of Control Loops and Operating Parameters for Three-Phase Separators Used in Oilfield Central Processing Facilities
20
作者 Zhenfeng Li Yaqiao Li Guangjun Wei 《Fluid Dynamics & Materials Processing》 EI 2023年第3期635-649,共15页
In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to... In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage. 展开更多
关键词 Distributed control system(DCS) three-phase separator control loop operating parameter
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部