The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev...One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.展开更多
The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works ...The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network.展开更多
Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various ...Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various damage modes may occur during its service life.A reconfigurable DBN method is proposed in this paper.The structure of the DBN can be updated dynamically to describe the interactions between different damages.Two common damages(fatigue and bolt loosening)for a spacecraft structure are considered in a numerical example.The results show that the reconfigurable DBN can accurately predict the acceleration phenomenon of crack growth caused by bolt loosening while the DBN with time-invariant structure cannot,even with enough updates.The definition of interaction coefficients makes the reconfigurable DBN easy to track multiple damages and be extended to more complex problems.The method also has a good physical interpretability as the reconfiguration of DBN corresponds to a specific mechanism.Satisfactory predictions do not require precise knowledge of reconfiguration conditions,making the method more practical.展开更多
In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditiona...In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools.展开更多
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric...Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr...The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications.展开更多
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo...Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.展开更多
In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the e...In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.展开更多
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se...The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.展开更多
The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To a...The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network(DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter(PF) for this pruned DBN(PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit(DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference.展开更多
With the accelerated warming of the world,the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and open...With the accelerated warming of the world,the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and opening of ice-free northern passages.Numerical weather prediction and statistical prediction are two methods for predicting visibility.As microphysical parameterization schemes for visibility are so sophisticated,visibility prediction using numerical weather prediction models includes large uncertainties.With the development of artificial intelligence,statistical prediction methods have received increasing attention.In this study,we constructed a statistical model with a physical basis,to predict visibility in the Arctic based on a dynamic Bayesian network,and tested visibility prediction over a 1°×1°grid area averaged daily.The results show that the mean relative error of the predicted visibility from the dynamic Bayesian network is approximately 14.6%compared with the inferred visibility from the artificial neural network.However,dynamic Bayesian network can predict visibility for only 3 days.Moreover,with an increase in predicted area and period,the uncertainty of the predicted visibility becomes larger.At the same time,the accuracy of the predicted visibility is positively correlated with the time period of the input evidence data.It is concluded that using a dynamic Bayesian network to predict visibility can be useful over Arctic regions for projected climatic changes.展开更多
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont...This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.展开更多
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e...Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.展开更多
The cluster synchronization problem of complex dynamical networks with each node being a Lurie system with exter- nal disturbances and time-varying delay is investigated in this paper. Some criteria for cluster synchr...The cluster synchronization problem of complex dynamical networks with each node being a Lurie system with exter- nal disturbances and time-varying delay is investigated in this paper. Some criteria for cluster synchronization with desired H∞ performance are presented by using a local linear control scheme. Firstly, sufficient conditions are established to realize cluster synchronization of the Lurie dynamical networks without time delay. Then, the notion of the cluster synchronized region is introduced, and some conditions guaranteeing the cluster synchronized region and unbounded cluster synchro- nized region are derived. Furthermore, the cluster synchronization and cluster synchronized region in the Lurie dynamical networks with time-varying delay are considered. Numerical examples are finally provided to verify and illustrate the theoretical results.展开更多
Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostic...Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated to predict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specific steps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithms for DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithms was used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrial process. Preliminary experimental results are promising.展开更多
In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph ...In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter.展开更多
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri...A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.展开更多
Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predi...Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predict the uncertain mobility of objects becomes an important and challenging problem.Existing algorithms for trajectory prediction in moving objects databases mainly focus on identifying frequent trajectory patterns,and do not take account of the effect of essential dynamic environmental factors.In this study,a general schema for predicting uncertain trajectories of moving objects with dynamic environment awareness is presented,and the key techniques in trajectory prediction arc addressed in detail.In order to accurately predict the trajectories,a trajectory prediction algorithm based on continuous time Bayesian networks(CTBNs) is improved and applied,which takes dynamic environmental factors into full consideration.Experiments conducted on synthetic trajectory data verify the effectiveness of the improved algorithm,which also guarantees the time performance as well.展开更多
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
基金funding support from the National Natural Science Foundation of China(Grant No.42177143 and 51809221)the Science Foundation for Distinguished Young Scholars of Sichuan Province,China(Grant No.2020JDJQ0011).
文摘One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.
基金supported by the Chinese Universities Scientific Fund(ZYGX2020ZB022)the National Natural Science Foundation of China(51775090).
文摘The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network.
基金supported by the Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001)the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(Grant No.6142905223505)the National Natural Science Foundation of China(Grant No.12002312).
文摘Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various damage modes may occur during its service life.A reconfigurable DBN method is proposed in this paper.The structure of the DBN can be updated dynamically to describe the interactions between different damages.Two common damages(fatigue and bolt loosening)for a spacecraft structure are considered in a numerical example.The results show that the reconfigurable DBN can accurately predict the acceleration phenomenon of crack growth caused by bolt loosening while the DBN with time-invariant structure cannot,even with enough updates.The definition of interaction coefficients makes the reconfigurable DBN easy to track multiple damages and be extended to more complex problems.The method also has a good physical interpretability as the reconfiguration of DBN corresponds to a specific mechanism.Satisfactory predictions do not require precise knowledge of reconfiguration conditions,making the method more practical.
基金This research was supported by the Sichuan Science and Technology Depart-ment under Contract Nos.2019YJ0396 and 2018JY0516the National Natural Science Foundation of China under the Contract No.51705041.
文摘In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51779267)the Taishan Scholars Project (Grant No. tsqn201909063)+3 种基金the Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province (Grant No.2019KJB016)the National Key Research and Development Program of China (Grant No. 2019YFE0105100)the Fundamental Research Funds for the Central Universitiesthe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment (Grant No.20CX02301A)。
文摘Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
基金supported by the Fundamental Scientific Research Business Expenses for Central Universities(3072021CFJ0803)the Advanced Marine Communication and Information Technology Ministry of Industry and Information Technology Key Laboratory Project(AMCIT21V3).
文摘The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications.
基金supported by the National Key Research andDevelopment Program of China(2017YFA0700300)the National Natural Sciences Foundation of China(61533005,61703071,61603069)。
文摘Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.
文摘In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.
基金the National Natural Science Fundation of China (10377014).
文摘The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.
基金Projects(2010ZD11007,20100751010)supported by Aeronautical Science Foundation of China
文摘The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network(DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter(PF) for this pruned DBN(PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit(DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference.
文摘With the accelerated warming of the world,the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and opening of ice-free northern passages.Numerical weather prediction and statistical prediction are two methods for predicting visibility.As microphysical parameterization schemes for visibility are so sophisticated,visibility prediction using numerical weather prediction models includes large uncertainties.With the development of artificial intelligence,statistical prediction methods have received increasing attention.In this study,we constructed a statistical model with a physical basis,to predict visibility in the Arctic based on a dynamic Bayesian network,and tested visibility prediction over a 1°×1°grid area averaged daily.The results show that the mean relative error of the predicted visibility from the dynamic Bayesian network is approximately 14.6%compared with the inferred visibility from the artificial neural network.However,dynamic Bayesian network can predict visibility for only 3 days.Moreover,with an increase in predicted area and period,the uncertainty of the predicted visibility becomes larger.At the same time,the accuracy of the predicted visibility is positively correlated with the time period of the input evidence data.It is concluded that using a dynamic Bayesian network to predict visibility can be useful over Arctic regions for projected climatic changes.
基金Project supported by the Funds for Creative Research Groups of China(Grant No.60821063)the National Basic Research Program of China(Grant No.2009CB320604)+2 种基金the National Natural Science Foundation of China(Grant No.60974043)the 111 Project(Grant No.B08015)the Science and Technology Research Project of the Educational Department of Liaoning Province of China(Grant No.2008S156)
文摘This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.
基金supported by the Natural Science Foundation of Tianjin(Grant No.16JCYBJC23000)the Open Foundation of the Key Laboratory for Ecological Environment in Coastal Areas of the State Oceanic Administration(Grant No.201604)Science and Technology Foundation for Young Scholars from Tianjin Fisheries Bureau(Grant No.J2014-05)
文摘Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61075065,60774045,and U1134108)the Talent Introduction Scientific Research Foundation of Northwest University for Nationalities(Grant No.xbmuyjrc201304)the Foundation for Young Talents of Gansu Province,China(Grant No.1208RJYA013)
文摘The cluster synchronization problem of complex dynamical networks with each node being a Lurie system with exter- nal disturbances and time-varying delay is investigated in this paper. Some criteria for cluster synchronization with desired H∞ performance are presented by using a local linear control scheme. Firstly, sufficient conditions are established to realize cluster synchronization of the Lurie dynamical networks without time delay. Then, the notion of the cluster synchronized region is introduced, and some conditions guaranteeing the cluster synchronized region and unbounded cluster synchro- nized region are derived. Furthermore, the cluster synchronization and cluster synchronized region in the Lurie dynamical networks with time-varying delay are considered. Numerical examples are finally provided to verify and illustrate the theoretical results.
文摘Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated to predict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specific steps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithms for DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithms was used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrial process. Preliminary experimental results are promising.
基金Supported by the National Natural Science Foundation of China(61273211,60974015,61273309)the Foundation for the Author of National Excellent Doctoral Dissertation of China(200921)+1 种基金the Shanghai Rising-Star Program(11QA1400400)the Marie Curie International Incoming Fellowship from the European Commission(FP7-PEOPLE-2011-IIF-302421)
文摘In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter.
基金Project supported by the National Natural Science Foundation of China (Grant No 60874113)
文摘A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.
基金supported by the National Natural Science Foundation of China (Nos.61100045,61165013,61003142,60902023,and 61171096)the China Postdoctoral Science Foundation (Nos.20090461346,201104697)+3 种基金the Youth Foundation for Humanities and Social Sciences of Ministry of Education of China (No.10YJCZH117)the Fundamental Research Funds for the Central Universities (Nos.SWJTU09CX035,SWJTU11ZT08)Zhejiang Provincial Natural Science Foundation of China (Nos.Y1100589,Y1080123)the Natural Science Foundation of Ningbo,China (No.2011A610175)
文摘Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predict the uncertain mobility of objects becomes an important and challenging problem.Existing algorithms for trajectory prediction in moving objects databases mainly focus on identifying frequent trajectory patterns,and do not take account of the effect of essential dynamic environmental factors.In this study,a general schema for predicting uncertain trajectories of moving objects with dynamic environment awareness is presented,and the key techniques in trajectory prediction arc addressed in detail.In order to accurately predict the trajectories,a trajectory prediction algorithm based on continuous time Bayesian networks(CTBNs) is improved and applied,which takes dynamic environmental factors into full consideration.Experiments conducted on synthetic trajectory data verify the effectiveness of the improved algorithm,which also guarantees the time performance as well.