期刊文献+
共找到618篇文章
< 1 2 31 >
每页显示 20 50 100
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
1
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
下载PDF
Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks 被引量:4
2
作者 Haoyu Mao Nuwen Xu +4 位作者 Xiang Li Biao Li Peiwei Xiao Yonghong Li Peng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2521-2538,共18页
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev... One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects. 展开更多
关键词 Microseismic monitoring Moment tensor dynamic bayesian network(DBN) Rockburst warning Shuangjiangkou hydropower station
下载PDF
Reliability analysis for wireless communication networks via dynamic Bayesian network
3
作者 YANG Shunqi ZENG Ying +2 位作者 LI Xiang LI Yanfeng HUANG Hongzhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1368-1374,共7页
The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works ... The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network. 展开更多
关键词 dynamic bayesian network(DBN) wireless commu-nication network continuous time bayesian network(CTBN) network reliability
下载PDF
A reconfigurable dynamic Bayesian network for digital twin modeling of structures with multiple damage modes 被引量:1
4
作者 Yumei Ye Qiang Yang +3 位作者 Jingang Zhang Songhe Meng Jun Wang Xia Tang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期251-260,共10页
Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various ... Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various damage modes may occur during its service life.A reconfigurable DBN method is proposed in this paper.The structure of the DBN can be updated dynamically to describe the interactions between different damages.Two common damages(fatigue and bolt loosening)for a spacecraft structure are considered in a numerical example.The results show that the reconfigurable DBN can accurately predict the acceleration phenomenon of crack growth caused by bolt loosening while the DBN with time-invariant structure cannot,even with enough updates.The definition of interaction coefficients makes the reconfigurable DBN easy to track multiple damages and be extended to more complex problems.The method also has a good physical interpretability as the reconfiguration of DBN corresponds to a specific mechanism.Satisfactory predictions do not require precise knowledge of reconfiguration conditions,making the method more practical. 展开更多
关键词 dynamic bayesian network Reusable spacecraft DAMAGE RECONFIGURATION
下载PDF
Reliability Modeling and Evaluation of Complex Multi-State System Based on Bayesian Networks Considering Fuzzy Dynamic of Faults 被引量:3
5
作者 Fangjun Zuo Meiwei Jia +2 位作者 Guang Wen Huijie Zhang Pingping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期993-1012,共20页
In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditiona... In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools. 展开更多
关键词 bayesian network(BN) dynamics FUZZY MULTI-STATE
下载PDF
A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study 被引量:3
6
作者 CAI Bao-ping ZHANG Yan-ping +5 位作者 YUAN Xiao-bing GAO Chun-tan LIU Yong-hong CHEN Guo-ming LIU Zeng-kai JI Ren-jie 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期597-607,共11页
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric... Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach. 展开更多
关键词 structure resilience structure system remaining useful life dynamic bayesian networks
下载PDF
Stochastic synchronization for time-varying complex dynamical networks 被引量:2
7
作者 Guo Xiao-Yong Li Jun-Min 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期123-130,共8页
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal... This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results. 展开更多
关键词 stochastic dynamical networks SYNCHRONIZATION time-varying coupling strength adaptive control
下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:2
8
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic bayesian network(DDBN) parameter learning missing data filling bayesian estimation
下载PDF
Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input 被引量:2
9
作者 Long Chen Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1437-1445,共9页
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo... Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one. 展开更多
关键词 Industrial time series kernel dynamic bayesian networks(KDBN) prediction intervals(PIs) variational inference
下载PDF
Impulsive Synchronization of Nonlinear Stochastic Dynamical Networks with Time-Varying Delays
10
作者 Li Li 《Applied Mathematics》 2021年第12期1145-1155,共11页
In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the e... In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach. 展开更多
关键词 Stochastic dynamical networks time-varying Delays Impulsive Control Exponential Synchronization
下载PDF
Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian network 被引量:6
11
作者 Tang Zheng Gao Xiaoguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期702-708,共7页
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se... The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly. 展开更多
关键词 self-defense electronic jamming discrete dynamic bayesian network decision-making model
下载PDF
Comparison of dynamic Bayesian network approaches for online diagnosis of aircraft system 被引量:2
12
作者 于劲松 冯威 +1 位作者 唐荻音 刘浩 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2926-2934,共9页
The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To a... The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network(DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter(PF) for this pruned DBN(PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit(DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference. 展开更多
关键词 online diagnosis dynamic bayesian network particle filter dynamic arithmetic circuit
下载PDF
Prediction of visibility in the Arctic based on dynamic Bayesian network analysis 被引量:2
13
作者 Shijun Zhao Yulong Shan Ismail Gultepe 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第4期57-67,共11页
With the accelerated warming of the world,the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and open... With the accelerated warming of the world,the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and opening of ice-free northern passages.Numerical weather prediction and statistical prediction are two methods for predicting visibility.As microphysical parameterization schemes for visibility are so sophisticated,visibility prediction using numerical weather prediction models includes large uncertainties.With the development of artificial intelligence,statistical prediction methods have received increasing attention.In this study,we constructed a statistical model with a physical basis,to predict visibility in the Arctic based on a dynamic Bayesian network,and tested visibility prediction over a 1°×1°grid area averaged daily.The results show that the mean relative error of the predicted visibility from the dynamic Bayesian network is approximately 14.6%compared with the inferred visibility from the artificial neural network.However,dynamic Bayesian network can predict visibility for only 3 days.Moreover,with an increase in predicted area and period,the uncertainty of the predicted visibility becomes larger.At the same time,the accuracy of the predicted visibility is positively correlated with the time period of the input evidence data.It is concluded that using a dynamic Bayesian network to predict visibility can be useful over Arctic regions for projected climatic changes. 展开更多
关键词 ARCTIC visibility prediction artificial neural network dynamic bayesian network
下载PDF
Robust adaptive synchronization of uncertain and delayed dynamical complex networks with faulty network 被引量:1
14
作者 金小峥 杨光红 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期184-190,共7页
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont... This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria. 展开更多
关键词 dynamical complex networks SYNCHRONIZATION robust adaptive control faulty network time-varying delays
下载PDF
Linking Structural Equation Modeling with Bayesian Network and Its Application to Coastal Phytoplankton Dynamics in the Bohai Bay
15
作者 XU Xiao-fu SUN Jian +2 位作者 NIE Hong-tao YUAN De-kui TAO Jian-hua 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期733-748,共16页
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e... Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay. 展开更多
关键词 structural equation modeling bayesian networks ecological modeling Bohai Bay phytoplankton dynamics
下载PDF
Robust H_∞ cluster synchronization analysis of Lurie dynamical networks
16
作者 郭凌 年晓红 +1 位作者 潘欢 邴志桐 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期162-170,共9页
The cluster synchronization problem of complex dynamical networks with each node being a Lurie system with exter- nal disturbances and time-varying delay is investigated in this paper. Some criteria for cluster synchr... The cluster synchronization problem of complex dynamical networks with each node being a Lurie system with exter- nal disturbances and time-varying delay is investigated in this paper. Some criteria for cluster synchronization with desired H∞ performance are presented by using a local linear control scheme. Firstly, sufficient conditions are established to realize cluster synchronization of the Lurie dynamical networks without time delay. Then, the notion of the cluster synchronized region is introduced, and some conditions guaranteeing the cluster synchronized region and unbounded cluster synchro- nized region are derived. Furthermore, the cluster synchronization and cluster synchronized region in the Lurie dynamical networks with time-varying delay are considered. Numerical examples are finally provided to verify and illustrate the theoretical results. 展开更多
关键词 luster synchronization Lurie dynamics network H∞ performance time-varying delay
下载PDF
Dynamic Bayesian Network Based Prognosis in Machining Processes
17
作者 董明 杨志波 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期318-322,共5页
Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostic... Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated to predict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specific steps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithms for DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithms was used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrial process. Preliminary experimental results are promising. 展开更多
关键词 dynamic bayesian network (DBN) PROGNOSIS remaining useful life
下载PDF
Synchronization of networks with time-varying couplings
18
作者 LU Wen-lian CHEN Tian-ping 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期438-454,共17页
In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph ... In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter. 展开更多
关键词 SYNCHRONIZATION coupled dynamical system network time-varying coupling
下载PDF
Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays
19
作者 唐漾 钟恢凰 方建安 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4080-4090,共11页
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri... A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers. 展开更多
关键词 stochastically hybrid coupling discrete and distributed time-varying delays complex dynamical networks chaotic neural networks
下载PDF
Key techniques for predicting the uncertain trajectories of moving objects with dynamic environment awareness 被引量:1
20
作者 Shaojie QIAO Xian WANG +2 位作者 Lu'an TANG Liangxu LIU Xun GONG 《Journal of Modern Transportation》 2011年第3期199-206,共8页
Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predi... Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predict the uncertain mobility of objects becomes an important and challenging problem.Existing algorithms for trajectory prediction in moving objects databases mainly focus on identifying frequent trajectory patterns,and do not take account of the effect of essential dynamic environmental factors.In this study,a general schema for predicting uncertain trajectories of moving objects with dynamic environment awareness is presented,and the key techniques in trajectory prediction arc addressed in detail.In order to accurately predict the trajectories,a trajectory prediction algorithm based on continuous time Bayesian networks(CTBNs) is improved and applied,which takes dynamic environmental factors into full consideration.Experiments conducted on synthetic trajectory data verify the effectiveness of the improved algorithm,which also guarantees the time performance as well. 展开更多
关键词 trajectory prediction moving objects databases dynamic environmental factors continuous time bayesian networks
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部