Given a fixed prime number p, the multiplet of abelian type invariants of the p-class groups of all unramified cyclic degree p extensions of a number field K is called its IPAD (index-p abeliani- zation data). These i...Given a fixed prime number p, the multiplet of abelian type invariants of the p-class groups of all unramified cyclic degree p extensions of a number field K is called its IPAD (index-p abeliani- zation data). These invariants have proved to be a valuable information for determining the Galois group of the second Hilbert p-class field and the p-capitulation type of K. For p=3 and a number field K with elementary p-class group of rank two, all possible IPADs are given in the complete form of several infinite sequences. Iterated IPADs of second order are used to identify the group of the maximal unramified pro-p extension of K.展开更多
Let p be a prime and K be a number field with non-trivial p-class group ClpK. A crucial step in identifying the Galois group G∞p of the maximal unramified pro-p extension of K is to determine its two-stage approximat...Let p be a prime and K be a number field with non-trivial p-class group ClpK. A crucial step in identifying the Galois group G∞p of the maximal unramified pro-p extension of K is to determine its two-stage approximation M=G2pk, that is the second derived quotient M≃G/Gn. The family τ1K of abelian type invariants of the p-class groups ClpL of all unramified cyclic extensions L/K of degree p is called the index- abelianization data (IPAD) of K. It is able to specify a finite batch of contestants for the second p-class group M of K. In this paper we introduce two different kinds of generalized IPADs for obtaining more sophisticated results. The multi-layered IPAD (τ1Kτ(2)K) includes data on unramified abelian extensions L/K of degree p2 and enables sharper bounds for the order of M in the case Clpk≃(p,p,p), where current im-plementations of the p-group generation algorithm fail to produce explicit contestants for M , due to memory limitations. The iterated IPAD of second order τ(2)K contains information on non-abelian unramified extensions L/K of degree p2, or even p3, and admits the identification of the p-class tower group G for various infinite series of quadratic fields K=Q(√d) with ClpK≃(p,p) possessing a p-class field tower of exact length lpK=3 as a striking novelty.展开更多
文摘Given a fixed prime number p, the multiplet of abelian type invariants of the p-class groups of all unramified cyclic degree p extensions of a number field K is called its IPAD (index-p abeliani- zation data). These invariants have proved to be a valuable information for determining the Galois group of the second Hilbert p-class field and the p-capitulation type of K. For p=3 and a number field K with elementary p-class group of rank two, all possible IPADs are given in the complete form of several infinite sequences. Iterated IPADs of second order are used to identify the group of the maximal unramified pro-p extension of K.
文摘Let p be a prime and K be a number field with non-trivial p-class group ClpK. A crucial step in identifying the Galois group G∞p of the maximal unramified pro-p extension of K is to determine its two-stage approximation M=G2pk, that is the second derived quotient M≃G/Gn. The family τ1K of abelian type invariants of the p-class groups ClpL of all unramified cyclic extensions L/K of degree p is called the index- abelianization data (IPAD) of K. It is able to specify a finite batch of contestants for the second p-class group M of K. In this paper we introduce two different kinds of generalized IPADs for obtaining more sophisticated results. The multi-layered IPAD (τ1Kτ(2)K) includes data on unramified abelian extensions L/K of degree p2 and enables sharper bounds for the order of M in the case Clpk≃(p,p,p), where current im-plementations of the p-group generation algorithm fail to produce explicit contestants for M , due to memory limitations. The iterated IPAD of second order τ(2)K contains information on non-abelian unramified extensions L/K of degree p2, or even p3, and admits the identification of the p-class tower group G for various infinite series of quadratic fields K=Q(√d) with ClpK≃(p,p) possessing a p-class field tower of exact length lpK=3 as a striking novelty.