The development and wide application of genetic transformation for cotton improvement are restrained by the unresolved problem of genotype dependence in regeneration in vitro.High embryogenic and regenerative potentia...The development and wide application of genetic transformation for cotton improvement are restrained by the unresolved problem of genotype dependence in regeneration in vitro.High embryogenic and regenerative potential have been obtained for limited number of Coker type genotypes。展开更多
Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its p...Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.展开更多
Systemic sclerosis(SSc) is a complex, multiorgan autoimmune disease of unknown etiology. Manifestation of the disease results from an interaction of three key pathologic features including irregularities of the anti...Systemic sclerosis(SSc) is a complex, multiorgan autoimmune disease of unknown etiology. Manifestation of the disease results from an interaction of three key pathologic features including irregularities of the antigen-specific immune system and the non-specific Immune system, resulting in autoantibody production, vascular endothelial activation of small blood vessels, and tissue fibrosis as a result of fibroblast dysfunction. Given the heterogeneity of clinical presentation of the disease, a lack of universal models has impeded adequate testing of potential therapies for SSc. Regardless, recent research has elucidated the roles of various ubiquitous molecular mechanisms that contribute to the clinical manifestation of the disease. Transforming growth factor β(TGF-β) has been identified as a regulator of pathological fibrogenesis in SSc. Various processes, including cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis are regulated by TGF-β,a type of cytokine secreted by macrophages and many other cell types. Understanding the essential role TGF-β pathways play in the pathology of systemic sclerosis could provide a potential outlet for treatment and a better understanding of this severe disease.展开更多
This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of...This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of coordinate transformation and orthogonal decomposition of vector fields.Then,based on the equivalent form,some delay-dependent results are derived for the stability analysis of the systems by constructing a novel Lyapunov functional.Thirdly,the authors use the equivalent form and the obtained stability results to investigate the H_∞ control problem for a class of nonhnear time-delay control systems,and present a control design procedure.Finally,an illustrative example is given to show the effectiveness of the results obtained in this paper.It is shown that the main results of this paper are easier to check than some existing ones,and have less conservatism.展开更多
This paper describes a person identifcation method for a mobile robot which performs specifc person following under dynamic complicated environments like a school canteen where many persons exist.We propose a distance...This paper describes a person identifcation method for a mobile robot which performs specifc person following under dynamic complicated environments like a school canteen where many persons exist.We propose a distance-dependent appearance model which is based on scale-invariant feature transform(SIFT) feature.SIFT is a powerful image feature that is invariant to scale and rotation in the image plane and also robust to changes of lighting condition.However,the feature is weak against afne transformations and the identifcation power will thus be degraded when the pose of a person changes largely.We therefore use a set of images taken from various directions to cope with pose changes.Moreover,the number of SIFT feature matches between the model and an input image will decrease as the person becomes farther away from the camera.Therefore,we also use a distance-dependent threshold.The person following experiment was conducted using an actual mobile robot,and the quality assessment of person identifcation was performed.展开更多
文摘The development and wide application of genetic transformation for cotton improvement are restrained by the unresolved problem of genotype dependence in regeneration in vitro.High embryogenic and regenerative potential have been obtained for limited number of Coker type genotypes。
基金National Natural Science Foundation of China(No.60576020,No.60606014).
文摘Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.
文摘Systemic sclerosis(SSc) is a complex, multiorgan autoimmune disease of unknown etiology. Manifestation of the disease results from an interaction of three key pathologic features including irregularities of the antigen-specific immune system and the non-specific Immune system, resulting in autoantibody production, vascular endothelial activation of small blood vessels, and tissue fibrosis as a result of fibroblast dysfunction. Given the heterogeneity of clinical presentation of the disease, a lack of universal models has impeded adequate testing of potential therapies for SSc. Regardless, recent research has elucidated the roles of various ubiquitous molecular mechanisms that contribute to the clinical manifestation of the disease. Transforming growth factor β(TGF-β) has been identified as a regulator of pathological fibrogenesis in SSc. Various processes, including cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis are regulated by TGF-β,a type of cytokine secreted by macrophages and many other cell types. Understanding the essential role TGF-β pathways play in the pathology of systemic sclerosis could provide a potential outlet for treatment and a better understanding of this severe disease.
基金supported by the National Natural Science Foundation of China under Grant Nos.G60774009,61074068,61034007,61374065,and 61304033the Research Fund for the Doctoral Program of Chinese Higher Education under Grant No.200804220028+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos.ZR2013ZEM006,ZR2011EL021,BS2011ZZ012,2013ZRB01873Colleges and Universities in Shandong Province Science and Technology Project under Grant Nos.J13LN37 and J12LN29
文摘This paper investigates the stability analysis and H_∞ control for a class of nonlinear timedelay systems,and proposes a number of new results.Firstly,an equivalent form is given for this class of systems by means of coordinate transformation and orthogonal decomposition of vector fields.Then,based on the equivalent form,some delay-dependent results are derived for the stability analysis of the systems by constructing a novel Lyapunov functional.Thirdly,the authors use the equivalent form and the obtained stability results to investigate the H_∞ control problem for a class of nonhnear time-delay control systems,and present a control design procedure.Finally,an illustrative example is given to show the effectiveness of the results obtained in this paper.It is shown that the main results of this paper are easier to check than some existing ones,and have less conservatism.
基金supported by JSPS KAKENHI (No.23700203) and NEDO Intelligent RT Software Project
文摘This paper describes a person identifcation method for a mobile robot which performs specifc person following under dynamic complicated environments like a school canteen where many persons exist.We propose a distance-dependent appearance model which is based on scale-invariant feature transform(SIFT) feature.SIFT is a powerful image feature that is invariant to scale and rotation in the image plane and also robust to changes of lighting condition.However,the feature is weak against afne transformations and the identifcation power will thus be degraded when the pose of a person changes largely.We therefore use a set of images taken from various directions to cope with pose changes.Moreover,the number of SIFT feature matches between the model and an input image will decrease as the person becomes farther away from the camera.Therefore,we also use a distance-dependent threshold.The person following experiment was conducted using an actual mobile robot,and the quality assessment of person identifcation was performed.