期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Flow Behavior of Clay-Silt to Sand-Silt Water-Rich Suspensions at Low to High Shear Rates: Implications for Slurries, Transitional Flows, and Submarine Debris-Flows 被引量:1
1
作者 Pierdomenico DEL GAUDIO Guido VENTURA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2395-2404,共10页
Water-rich clay to sand suspensions show a shear rate dependent flow behavior and knowledge of the appropriate rheological model is relevant for sedimentological, industrial and hydraulic studies. We present experimen... Water-rich clay to sand suspensions show a shear rate dependent flow behavior and knowledge of the appropriate rheological model is relevant for sedimentological, industrial and hydraulic studies. We present experimental rheological measurements of water-rich(40 to 60 wt%) clay to silt(population A) and silt to sand(population B) suspensions mixed in different proportions. The data evidence a shear rate dependent shear thinning-shear thickening transition. At lower shear rates, the suspensions organize in chains of particles, whereas at higher shear rates, these chains disrupt so increasing the viscosity. The viscosity, consistency and yield stress decrease as the A+B fraction decreases as the content of B particles increases. This behavior reflects the competing effects of the lubrication and frictional processes as a function of particle size and water content. Transitional flows form by the incorporation of small amounts of the finer fraction while ‘oceanic floods’ form at the estuary of rivers and the submarine debris-flows increase their velocity by incorporating water. The critical Reynolds number of the studied suspensions is ~2000±100 suggesting that the grainsize plays a major role in the laminar to turbulent transition. Our results have implications for the modeling of sediment flows and the hazard related to floods. 展开更多
关键词 rheology water-sediment suspensions slurry sludge transitional flows and mud flows volcanogenic sediment-water flows oceanic floods
下载PDF
Flow characteristics and regime transition of aqueous foams in porous media over a wide range of quality,velocity,and surfactant concentration 被引量:1
2
作者 Bin-Fei Li Meng-Yuan Zhang +3 位作者 Zhao-Min Li Anthony Kovscek Yan Xin Bo-Liang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1044-1052,共9页
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T... Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams. 展开更多
关键词 Foam flow regime and transition Porous media Pressure gradient flow velocity Surfactant concentration Foam quality
下载PDF
INVESTIGATION OF DOMINANT FREQUENCIES IN TRANSITION REYNOLDS NUMBER RANGE OF FLOW AROUND A CIRCULAR CYLINDER PARTⅡ: THEORETICAL DETERMINATION OF THE RELATIONSHIP BETWEEN VORTEX SHEDDING AND TRANSITION FREQUENCIES AT DIFFERENT REYNOLDS NUMBERS 被引量:1
3
作者 AHMED N A 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期317-321,共5页
An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate v... An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate values of the scaling lengths associated with vortex shedding and shear layer frequencies to predict the power law relationship with Reynolds number. The predicted results are in good agreement with experimental results. The findings will provide a greater insight into the overall phenomenon involved. 展开更多
关键词 Vortex shedding transition Separated flow Shear layer Frequency Power spectral density
下载PDF
Effect of anisotropic resistance characteristic on boundary-layer transitional flow
4
作者 Zheng HONG Zhengyin YE +1 位作者 Kangling WU Kun YE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1935-1950,共16页
It is observed that the feather surface exhibits anisotropic resistances for the streamwise and spanwise flows.To obtain a qualitative understanding about the effect of this anisotropic resistance feature of surface o... It is observed that the feather surface exhibits anisotropic resistances for the streamwise and spanwise flows.To obtain a qualitative understanding about the effect of this anisotropic resistance feature of surface on the boundary-layer transitional flow over a flat plate,a simple phenomenological model for the anisotropic resistance is established in this paper.By means of the large eddy simulation(LES)with high-order accurate finite difference method,the numerical investigations are conducted.The numerical results show that with the spanwise resistance hindering the formation of vortexes,the transition from laminar flow to turbulent flow can be delayed,and turbulence is weakened when the flow becomes fully turbulent,which leads to significant drag reduction for the plate.On the contrary,the streamwise resistance renders the flow less stable,which leads to the earlier transition and enhances turbulence in the turbulent region,causing a drag increase for the plate.Thus,it is indicated that a surface with large resistance for spanwise flow and small resistance for streamwise flow can achieve significant drag reduction.The present results highlight the anisotropic resistance characteristic near the feather surface for drag reduction,and shed a light on the study of bird’s efficient flight. 展开更多
关键词 anisotropic resistance transitional flow drag reduction numerical simulation
下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process 被引量:1
5
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 Hydrogen liquefaction Spiral wound heat exchanger flow pattern transition Falling film flow
下载PDF
Flow transitions in model Czochralski GaAs melt
6
作者 陈淑仙 《Journal of Chongqing University》 CAS 2006年第2期63-70,共8页
The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then ... The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then back to axisymmetric flow again with increasing the crucible rotation rate is predicted. In the non-axisymmetric regime, the thermal wave induced by the combination of coriolis force, buoyancy and viscous force in the GaAs melt is predicted for the first time. The thermal wave is confirmed to be baroclinic thermal wave. The origin of the transition to non-axisymmetric flow is baroclinic instability. The critical parameters for the, transitions are presented, which are quantitatively in agreement with Fein and Preffer's experimental results, The calculated results can be taken as a reference for the growth of GaAs single-crystal of high quality, 展开更多
关键词 flow transitions thermal wave baroclinic instability GaAs melt
下载PDF
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
7
作者 Yong Zhao Tianlin Wang Zhi Zong 《Journal of Marine Science and Application》 2014年第4期388-393,共6页
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d... As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior. 展开更多
关键词 transitional boundary layer flow Reynolds averaged numerical simulation (RANS) turbulence models low Reynolds correction Reynolds stress eddy viscosity
下载PDF
Calculation of terminal velocity in transitional flow for spherical particle
8
作者 Zhang Lei Honaker Ricky +2 位作者 Liu Wenli Men Dongpo Chen Jinxiang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期311-317,共7页
The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more d... The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity. 展开更多
关键词 transitional flow Drag coefficient Terminal velocity Spherical particle Calculation
下载PDF
Direct and noisy transitions in a model shear flow
9
作者 Marina Pausch Bruno Eckhardt 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第3期111-116,共6页
The transition to turbulence in flows where the laminar profile is linearly stable requires perturbations of finite amplitude. "Optimal" perturbations are distinguished as extrema of certain functionals, and differe... The transition to turbulence in flows where the laminar profile is linearly stable requires perturbations of finite amplitude. "Optimal" perturbations are distinguished as extrema of certain functionals, and different functionals give different optima. We here discuss the phase space structure of a 2D simplified model of the transition to turbulence and discuss optimal perturbations with respect to three criteria: energy of the initial condition, energy dissipation of the initial condition, and amplitude of noise in a stochastic transition. We find that the states triggering the transition are different in the three cases, but show the same scaling with Reynolds number. 展开更多
关键词 transition to turbulence Shear flows Noise driven Optimal initial conditions
下载PDF
The Effect of the Gap Ratio on the Flow and Heat Transfer over a Bluff Body in Near-Wall Conditions 被引量:1
10
作者 Shaohua Zhai Guannan Xi 《Fluid Dynamics & Materials Processing》 EI 2022年第1期109-130,共22页
In order to study the effect of different gap ratios on the thermofluid-dynamic field around a bluff body located in proximity to a heated wall,a series of experiments and numerical simulations have been conducted.The... In order to study the effect of different gap ratios on the thermofluid-dynamic field around a bluff body located in proximity to a heated wall,a series of experiments and numerical simulations have been conducted.The former were carried out using an open circulating water tank experimental platform and a single cylinder and square column as geometrical models(their characteristic length being D).The latter were based on the well-known SIMPLE algorithm for incompressible flow.The results show that the gap ratio is an important factor affecting the wake characteristics of near-wall bluff bodies.When the gap ratio is small,the influence of the wall on the bluff body wake is large.With an increase in the gap extension,periodic vortex shedding is enabled and heat transfer is strengthened accordingly;in addition,the vortex shedding period is larger for the square column.The square column displays hysteresis compared with the cylinder at the same gap ratio(the critical gap ratio of cylinder is 0.2~0.4,while that of square column is 0.40.6). 展开更多
关键词 transition flow gap ratio near-wall flow characteristic enhanced heat transfer
下载PDF
Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet sections in lacustrine basins in China 被引量:1
11
作者 ZOU Caineng FENG Youliang +6 位作者 YANG Zhi JIANG Wenqi ZHANG Tianshu ZHANG Hong WANG Xiaoni ZHU Jichang WEI Qizhao 《Petroleum Exploration and Development》 SCIE 2023年第5期1013-1029,共17页
The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine... The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock. 展开更多
关键词 fine-grained deposit hyperpycnal flow deposit fine-grained debris flow deposit muddy flow deposit fine-grained transitional flow deposit reservoir sweet section organic-rich source rock shale oil
下载PDF
Influence of an inserted bar on the flow regimes in the hopper 被引量:1
12
作者 Yi Peng Sheng Zhang +4 位作者 Mengke Wang Guanghui Yang Jiangfeng Wan Liangwen Chen Lei Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期535-539,共5页
We investigated the influence of an inserted bar on the hopper flow experimentally.Three geometrical parameters,size of upper outlet D1,size of lower outlet D0,and the height of bar H,are variables here.With varying H... We investigated the influence of an inserted bar on the hopper flow experimentally.Three geometrical parameters,size of upper outlet D1,size of lower outlet D0,and the height of bar H,are variables here.With varying H we found three regimes:one transition from clogging to a surface flow and another transition from a surface flow to a dense flow.For the dense flow,the flow rate follows Beverloo’s law and there is a saturation of inclination of free surfaceθ.We plotted the velocity field and there is a uniform linear relation between the particle velocity and depth from the free surface.We also found that the required value of D_(1) to guarantee the connectivity of flow is little smaller than D_(0).For the transition from a surface flow to a dense flow,there is a jump of flow rate and the minimumθfor flowing is two degrees larger than the repose angle. 展开更多
关键词 hopper flow inserted bar flow type transition free surface velocity distribution
下载PDF
Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method 被引量:6
13
作者 赵轲 高正红 黄江涛 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第2期191-202,共12页
Abstract A transonic, high Reynolds number natural laminar flow airfoil is designed and studied. The γ-θ transition model is combined with the shear stress transport (SST) k-w turbulence model to predict the trans... Abstract A transonic, high Reynolds number natural laminar flow airfoil is designed and studied. The γ-θ transition model is combined with the shear stress transport (SST) k-w turbulence model to predict the transition region for a laminar-turbulent boundary layer. The non-uniform free-form deformation (NFFD) method based on the non-uniform rational B-spline (NURBS) basis function is introduced to the airfoil parameterization. The non-dominated sorting genetic algorithm-II (NSGA-II) is used as the search algo- rithm, and the surrogate model based on the Kriging models is introduced to improve the efficiency of the optimization system. The optimization system is set up based on the above technologies, and the robust design about the uncertainty of the Mach number is carried out for NASA0412 airfoil. The optimized airfoil is analyzed and compared with the original airfoil. The results show that natural laminar flow can be achieved on a supercritical airfoil to improve the aerodynamic characteristic of airfoils. 展开更多
关键词 non-uniform free-form deformation (NFFD) method transition model natural laminar flow (NFL) airfoil supercritical airfoil non-dominated sorting geneticalgorithm II (NSGA-II) robust design surrogate model
下载PDF
Transition and self-sustained turbulence in dilute suspensions of finite-size particles 被引量:1
14
作者 I.Lashgari F.Picano L.Brandt 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第3期121-125,共5页
We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., φ ≈0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 167... We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., φ ≈0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 1675, in the presence of few particles, independently of the initial condition, a value lower than that of the corresponding single-phase flow, i.e., Re ≈1775. In the dilute suspension, the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction. As in single phase flows, streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time, the streaks breakdown, flow experiences the transition to turbulence and the particle trajectories become chaotic, Otherwise, the streaks decay in time and the particles immigrate towards the channel core in a laminar flow. 展开更多
关键词 flow transition Suspension Finite-size particles Lift-up effect
下载PDF
Flow Instability of Molten GaAs in the Czochralski Configuration
15
作者 Shuxian CHEN Mingwei LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期395-401,共7页
The flow and heat transfer of molten GaAs under the interaction of buoyancy, Marangoni and crystal rotation in the Czochralski configuration are numerically studied by using a time-dependent and three-dimensional turb... The flow and heat transfer of molten GaAs under the interaction of buoyancy, Marangoni and crystal rotation in the Czochralski configuration are numerically studied by using a time-dependent and three-dimensional turbulent flow model for the first time. The transition from axisymmetric flow to non-axisymmetric flow and then returning to axisymmetric flow again with increasing centrifugal and coriolis forces by increasing the crystal rotation rate was numerically observed. The origin of the transition to non-axisymmetric flow has been proved to be baroclinic instability. Several important characteristics of baroclinic instability in the CZ GaAs melt have been predicted. These characteristics are found to be in agreement with experimental observations. 展开更多
关键词 flow transition Baroclinic instability Thermal wave CHARACTERISTICS GaAs melt
下载PDF
Numerical simulation study on multiphase flow pattern of hydrate slurry
16
作者 Xiao-Fang Lv Feng Chen +8 位作者 Jie Zhang Yang Liu Qian-Li Ma Hui Du Chuan-Shuo Wang Shi-Dong Zhou Bo-Hui Shi Shang-Fei Song Jing Gong 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3897-3917,共21页
The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This ... The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow. 展开更多
关键词 Hydrate slurry Numerical simulation Multiphase flow flow field distribution flow pattern transition
下载PDF
Study on the Organization Model of Wagon Flows in Railway Terminal
17
作者 严余松 朱松年 《Journal of Modern Transportation》 2000年第1期33-39,共7页
Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organ... Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organization of wagon flows in the railway terminal. Because of the great amounts of equipment and a large number of train operations, the study on railway terminal transport organization is mostly focused on a marshalling station in railway terminal or a part of it. Systematic study taking railway terminal as a whole is very few. In this paper, the organization of wagon flows in a railway terminal is analyzed and a wagon flow model in a railway terminal is established. The main principles of organization of local trains are also presented. 展开更多
关键词 railway terminal organization of wagon flows transit wagon flows local wagon flows local train
下载PDF
Short-term inbound rail transit passenger flow prediction based on BILSTM model and influence factor analysis
18
作者 Qianru Qi Rongjun Cheng Hongxia Ge 《Digital Transportation and Safety》 2023年第1期12-22,共11页
Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model i... Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%. 展开更多
关键词 Rail transit passenger flow predict Time travel characteristics BILSTM Influence factor Deep learning model
下载PDF
Micro-flow structure at regime transition from bubbling to turbulent fluidization in a fluidized bed 被引量:1
19
作者 Chaoyu Yan Yue Yuan +1 位作者 Xiaoyang Wei Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2024年第6期117-130,共14页
Gas-solid fluidized beds have found extensive utilization in frontline manufacturing,in particular as low-velocity beds.The fluidization status,the bubbling or turbulent flow regime and the transition in between,deter... Gas-solid fluidized beds have found extensive utilization in frontline manufacturing,in particular as low-velocity beds.The fluidization status,the bubbling or turbulent flow regime and the transition in between,determine the system performance in practical applications.Though the convoluted hydrodynamics are quantitively evaluated through numerous data-processing methodologies,none of them alone can reflect all the critical information to identify the transition from the bubbling to the turbulent regime.Accordingly,this study was to exploit a coupling data processing methodology,in the combination of standard deviation,power spectrum density,probability density function,wavelet transform,and wavelet multiresolution method,to jointly explain the micro-flow structure at the regime transition from bubbling to turbulent fluidization.The transient differential pressure fluctuation was measured for the evaluation in a fluidized bed(0.267 m i.d.×2.5 m height)with FCC catalysts(d_(p)=65μm,ρ_(p)=1780kg/m^(3))at different superficial gas velocities(0.02–1.4 m/s).The results show that the onset of turbulent fluidization starts earlier in the top section of the bed than in the bottom section.The wavelet decomposition displays that the fluctuation of differential pressure mainly concentrates on the sub-signals with an intermediate frequency band.These sub-signals could be synthesized into three types of scales(micro-scale,meso-scale,and macro-scale),representing the multi-scale hydrodynamics in the fluidized bed.The micro-scale signal has the characteristic information of bubbling fluidization,and the characteristic information of turbulent fluidization is mainly represented by the meso-scale signal.This work provides a systematic comprehension of fluidization status assessment and serves as an impetus for more coupling analysis in this sector. 展开更多
关键词 flow regime transition Bubbling fluidization Turbulent fluidization Micro-flow structure Differential pressure fluctuation
原文传递
Heat transfer law in leaching dump 被引量:1
20
作者 吴爱祥 王洪江 +4 位作者 习泳 杨保华 李建锋 尹升华 查克兵 《Journal of Central South University of Technology》 EI 2005年第6期732-736,共5页
Based on the law of temperature changes in the leaching dump and the forming process of heat flux, the basic balance equation of heat flow in dump was established, the dissipated heat flow from dump to the atmosphere ... Based on the law of temperature changes in the leaching dump and the forming process of heat flux, the basic balance equation of heat flow in dump was established, the dissipated heat flow from dump to the atmosphere was analyzed to estimate the surface temperature of the ore particle in dump and discover the law of forced heat convection of heat flow transfer in dump. And the lixiviate flow formula taking a certain heat flow out of dump was deduced by using the inversion method. Through theoretic analysis, combining Dexing copper mine heap leaching production practice, the results show that the heat flow of chalcopyrite leaching emitted is not so great, but the heat flow of pyrite leaching and sulphur oxidation produced take up a higher proportion of total heat flow; the dissipated heat flow takes up a lower proportion, and most of heat flow is absorbed by itself, thus the inside temperature rises gradually; and the saturation flow form for leaching is adopted, which makes the lixiviate seepage in the transitional flow or even in the turbulent flow, so as to accelerate the heat flow diffusing and keep the leaching dump temperature suitable for bacteria living. 展开更多
关键词 leaching dump bacteria leaching ore heat transfer forced convection transition flow
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部