The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high p...The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high profitability,such as chemical engineering(CE).In order to promote reliable AI utilization in CE,this review discusses the concept of transparency within AI utilizations,which is defined based on both explainable AI(XAI)concepts and key features from within the CE field.This review also highlights the requirements of reliable AI from the aspects of causality(i.e.,the correlations between the predictions and inputs of an AI),explainability(i.e.,the operational rationales of the workflows),and informativeness(i.e.,the mechanistic insights of the investigating systems).Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE.Furthermore,a comprehensive transparency analysis case study is provided as an example to enhance understanding.Overall,this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization.With this vital missing link,AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.展开更多
Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various t...Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.展开更多
In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance ...In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.展开更多
Fiber products for microwave kilns were prepared using alumina fibers with alumina contents of 72 mass%and 80 mass%,and calcined alumina powder(4-6μm)as the main raw materials,silica sol as the binder,and cationic st...Fiber products for microwave kilns were prepared using alumina fibers with alumina contents of 72 mass%and 80 mass%,and calcined alumina powder(4-6μm)as the main raw materials,silica sol as the binder,and cationic starch as the flocculant.Effects of different raw materials and their additions on the wave transparency of fiber products were researched.The results show that as the alumina fiber(72%)addition increases,the heating rate of the samples first decreases and then increases,and the corresponding wave transparency of the sample first increases and then decreases.When the alumina fibers addition is 40 mass%and the alumina powder addition is 30 mass%,the prepared microwave kiln lining material has a higher mullite content,which improves the wave transparency of the sample.The sample prepared from alumina fibers with an alumina content of 80%has a suitable glass-mullite phase ratio,performs lower overall dielectric constant and good wave transparency,and is a suitable lining material for microwave kilns.展开更多
We propose a three-cavity coupled cavity optomechanical(COM)structure with tunable system parameters and theoretically investigate the probe-light transmission rate.Numerical calculation of the system’s spectra demon...We propose a three-cavity coupled cavity optomechanical(COM)structure with tunable system parameters and theoretically investigate the probe-light transmission rate.Numerical calculation of the system’s spectra demonstrates distinctive compound-induced transparency(CIT)characteristics,including multiple transparency windows and sideband dips,which can be explained by a coupling between optomechanically-induced transparency(OMIT)and electromagnetically-induced transparency.The effects of optical loss(gain)in the cavity,number and topology of active cavity,tunneling ratio,and pump laser power on the CIT spectrum are evaluated and analyzed.Moreover,the optical group delay of CIT is highly controllable and fast–slow light inter-transition can be achieved.The proposed structure makes possible the advantageous tuning freedom and provides a potential platform for controlling light propagation and fast–slow light switching.展开更多
The ideal optomechanically induced transparency effects of an output probe field are investigated in a cavity optoelectromechanical system,which is composed of an optical cavity,a charged mechanical resonator,and a ch...The ideal optomechanically induced transparency effects of an output probe field are investigated in a cavity optoelectromechanical system,which is composed of an optical cavity,a charged mechanical resonator,and a charged object.Although the charged mechanical resonator damping rate is nonzero,the ideal optomechanically induced transparency can still appear due to the non-rotating wave approximation effect in the system.The location of optomechanically induced transparency dip can be controlled via the Coulomb coupling strength.In addition,we find that both the transparency window width and the maximum dispersion curve slope are closely related to the optical cavity decay rate.展开更多
We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system.For atom-field interaction,we construct a spatially dependent fie...We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system.For atom-field interaction,we construct a spatially dependent field by superimposing three standing-wave fields(SWFs)in 3D-atom localization.We achieve a high precision and high spatial resolution of an atom localization by appropriately adjusting the system variables such as field intensities and phase shifts.We also see the impact of Doppler shift and show that it dramatically deteriorates the precision of spatial information on 3D-atom localization.We believe that our suggested scheme opens up a fascinating way to improve the atom localization that supplies some practical applications in atom nanolithography,and Bose-Einstein condensation.展开更多
Quantitative trait loci(QTL) for percentage of chalky grain,degree of chalkiness,and endosperm transparency were detected using 3 recombinant inbred line populations derived from crosses between parental lines of co...Quantitative trait loci(QTL) for percentage of chalky grain,degree of chalkiness,and endosperm transparency were detected using 3 recombinant inbred line populations derived from crosses between parental lines of commercial three-line hybrids of indica rice.Two of the populations showed great variations on heading date,and the other had a short range of heading date variation.A total of 40 QTLs were detected and fell into 15 regions of 10 chromosomes,of which 5 regions were detected for 1 or more same traits over different populations,2 were detected for different traits in different populations,3 were detected for 2 or all the 3 traits in a single population,and 5 were detected for a single trait in a single population.Most of these QTLs have been reported previously,but a region located on the long arm of chromosome 10 showing significant effects in all the 3 populations has not been reported before.It was shown that a number of gene cloned,including the Wx and Alk for the physiochemical property of rice grain,and GW2,GS3 and GW5 for grain weight and grain size,could have played important roles for the genetic control of grain chalkiness in rice,but there are many more QTLs exerting stable effects for rice chalkiness over different genetic backgrounds.It is worth paying more attentions to these regions which harbor QTL such as the qPCG5.2/qDC5.2/qET5.2 and qPCG10/qDC10/qET10 detected in our study.Our results also showed that the use of segregating populations having high-uniform heading date could greatly increase the efficiency of the identification of QTL responsible for traits that are subjected to great environmental influence.展开更多
“Common but differentiated responsibilities and respective capabilities”(CBDRRC) is the most significant guiding principle in the international climate change regime, created by the United Nations Framework Conventi...“Common but differentiated responsibilities and respective capabilities”(CBDRRC) is the most significant guiding principle in the international climate change regime, created by the United Nations Framework Convention on Climate Change in 1992 and inherited by the Paris Agreement 24 years later. This paper examines the operationalization of the CBDRRC principle in one of the cornerstone rules of the regimedits transparency provisions, both in existing practice under the convention and possible evolvement in negotiations under the Paris Agreement, from the perspectives of both international rule-making and domestic implementation. The authors have found a continuous enhancement of the transparency framework since the 1990s, and gradual consolidation of a bifurcated system between developed and developing countries into a common one. The authors argue that the transparency framework, as part of the procedural rules, should be designed to facilitate transparent information sharing in accordance with substantive commitments under international climate change laws. Thus, it indirectly reflects historical responsibilities for climate change, while the framework should also be designed as feasible and reflective of the respective capabilities of nations. Finally, the evolution of the transparency framework will aim to enact common and enhanced provisions while differentiating between developed and developing countries in the near term, and greater transparency-related capacity-building for developing countries.展开更多
Progress in developing robust therapies for spinal cord injury (SCI), trau- matic brain injury (TBI) and peripheral nerve injury has been slow. A great deal has been learned over the past 30 years regarding both t...Progress in developing robust therapies for spinal cord injury (SCI), trau- matic brain injury (TBI) and peripheral nerve injury has been slow. A great deal has been learned over the past 30 years regarding both the intrinsic factors and the environmental factors that regulate axon growth, but this large body of information has not yet resulted in clinically available thera- peutics. This therapeutic bottleneck has many root causes, but a consensus is emerging that one contributing factor is a lack of standards for experi- mental design and reporting. The absence of reporting standards, and even of commonly accepted definitions of key words, also make data mining and bioinformatics analysis of neural plasticity and regeneration difficult, if not impossible. This short review will consider relevant background and poten- tial solutions to this problem in the axon regeneration domain.展开更多
Supply Chain Finance(SCF)refers to the financial service in which banks rely on core enterprises to manage the capital flow and logistics of upstream and downstream enterprises.SCF adopts a self-testing and closed-loo...Supply Chain Finance(SCF)refers to the financial service in which banks rely on core enterprises to manage the capital flow and logistics of upstream and downstream enterprises.SCF adopts a self-testing and closed-loop credit model to control funds and risks.The key factor in a successful SCF service is the deployment of SCF businessoriented information systems that allow businesses to form partnerships efficiently and expedite cash flows throughout the supply chain.Blockchain Technology(BCT),featuring decentralization,tamper-proofing,traceability,which is usually paired with the Internet of Things(IoT)in real-world contexts,has been widely adopted in the field of finance and is perfectly positioned to facilitate innovative collaborations among participants in supply chain networks.In this paper,we propose a BCT and IoT-based information management framework(named BC4Regu),which works as the regulatory to improve the information transparency in the business process of SCF.With BC4Regu,the operation cost of the whole supply chain can be significantly reduced through the coordination and integration of capital flow,information flow,logistics and trade flow in the supply chain.The contributions in this paper include:(1)proposing a novel information management framework which leverages Blockchain and IoT to solve the problem of information asymmetry in the trade of SCF;(2)proposing the technical design of BC4Regu,including the Blockchain infrastructure,distributed ledger-based integrated data flow service,and reshaped SCF process;and(3)applying BC4Regu to a group of scenarios and conducting theoretical analysis by introducing the principal-agent model to validate the BC4Regu.展开更多
A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu- merically studied in this paper. The proposed structure consists of a graphene layer composed of cou...A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu- merically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect cou- pling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.展开更多
A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT ...A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a threelevel atomic system coupled by standing wave.We show an accurate theoretical simulation via transfer-matrix theory,automatically accounting for multilayer reflections,thus fully demonstrate the existence of photonic crystal structure in atomic vapor.展开更多
Commentary Most would agree that providing comprehensive detail in scientific reporting is critical for the development of mean- ingful therapies and treatments for diseases. Such stellar practices 1) allow for repro...Commentary Most would agree that providing comprehensive detail in scientific reporting is critical for the development of mean- ingful therapies and treatments for diseases. Such stellar practices 1) allow for reproduction of experiments to con- firm results, 2) promote thorough analyses of data, and 3) foster the incremental advancement of valid approaches. Unfortunately, most would also agree we have far to go to reach this vital goal (Hackam and Redelmeier, 2006; Prinz et al., 2011; Baker et al., 2014).展开更多
A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz ti...A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.展开更多
A series of transparent ABS(T-ABS) resins were prepared by emulsion in situ suspension polymerization. The influences of the particle size and the content of rubber particles on the transparency of T-ABS resins were...A series of transparent ABS(T-ABS) resins were prepared by emulsion in situ suspension polymerization. The influences of the particle size and the content of rubber particles on the transparency of T-ABS resins were studied by varying the size and content of rubber particles in a single model system(rubber particles with a uniform size). The optical properties of T-ABS resins were investigated in a mixed system of SBR/PB particles and a hi-modal particle system(rubber particles with two different sizes, 70 and 400 nm in diameter) of SBR particles. It was found that when the size of the smaller particles ( 70 nm) in the mixed system of SBR/PB particles was in the range of 50-100 nm in diameter, the T-ABS resins showed a better transparency. These results provide a flexible and practical process for the preparation of T-ABS resins with good optical and mechanical properties.展开更多
Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors...Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.展开更多
The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the...The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the probe response is derived analytically from the optical Bloch equations under steady state condition to study the absorptive properties of the system under probe field propagation through an ensemble of stationary atoms as well as in a Doppler broadened atomic vapor medium.The most striking result is the conversion of electromagnetically induced transparency(EIT)into electromagnetically induced absorption(EIA)as we start switching from weak probe regime to strong probe regime.The dependence of this conversion on residual Doppler averaging due to wavelength mismatch is also shown by choosing the coupling transition as a Rydberg transition.展开更多
Transparency is a widely used but poorly defined term within the explainable artificial intelligence literature.This is due,in part,to the lack of an agreed definition and the overlap between the connected—sometimes ...Transparency is a widely used but poorly defined term within the explainable artificial intelligence literature.This is due,in part,to the lack of an agreed definition and the overlap between the connected—sometimes used synonymously—concepts of interpretability and explainability.We assert that transparency is the overarching concept,with the tenets of interpretability,explainability,and predictability subordinate.We draw on a portfolio of definitions for each of these distinct concepts to propose a human-swarm-teaming transparency and trust architecture(HST3-Architecture).The architecture reinforces transparency as a key contributor towards situation awareness,and consequently as an enabler for effective trustworthy human-swarm teaming(HST).展开更多
Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large ...Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large group index accom- panied with a sharp EIT-like transparency window offers potential applications for slowing down light and sensing.展开更多
文摘The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high profitability,such as chemical engineering(CE).In order to promote reliable AI utilization in CE,this review discusses the concept of transparency within AI utilizations,which is defined based on both explainable AI(XAI)concepts and key features from within the CE field.This review also highlights the requirements of reliable AI from the aspects of causality(i.e.,the correlations between the predictions and inputs of an AI),explainability(i.e.,the operational rationales of the workflows),and informativeness(i.e.,the mechanistic insights of the investigating systems).Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE.Furthermore,a comprehensive transparency analysis case study is provided as an example to enhance understanding.Overall,this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization.With this vital missing link,AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.
基金funding from the National Natural Science Foundation of China (Grant Nos.12035004 and 12320101004)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2023ZKZD06).
文摘Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.
基金the financial funding of the Guangdong Province Applied Science and Technology R&D Special Fund Project:Key Technologies for Industrialization of Sulfur-Resistant and High Refractive-Index LED Packaging Silicone Materials(2016B090930010).
文摘In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.
文摘Fiber products for microwave kilns were prepared using alumina fibers with alumina contents of 72 mass%and 80 mass%,and calcined alumina powder(4-6μm)as the main raw materials,silica sol as the binder,and cationic starch as the flocculant.Effects of different raw materials and their additions on the wave transparency of fiber products were researched.The results show that as the alumina fiber(72%)addition increases,the heating rate of the samples first decreases and then increases,and the corresponding wave transparency of the sample first increases and then decreases.When the alumina fibers addition is 40 mass%and the alumina powder addition is 30 mass%,the prepared microwave kiln lining material has a higher mullite content,which improves the wave transparency of the sample.The sample prepared from alumina fibers with an alumina content of 80%has a suitable glass-mullite phase ratio,performs lower overall dielectric constant and good wave transparency,and is a suitable lining material for microwave kilns.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575014)。
文摘We propose a three-cavity coupled cavity optomechanical(COM)structure with tunable system parameters and theoretically investigate the probe-light transmission rate.Numerical calculation of the system’s spectra demonstrates distinctive compound-induced transparency(CIT)characteristics,including multiple transparency windows and sideband dips,which can be explained by a coupling between optomechanically-induced transparency(OMIT)and electromagnetically-induced transparency.The effects of optical loss(gain)in the cavity,number and topology of active cavity,tunneling ratio,and pump laser power on the CIT spectrum are evaluated and analyzed.Moreover,the optical group delay of CIT is highly controllable and fast–slow light inter-transition can be achieved.The proposed structure makes possible the advantageous tuning freedom and provides a potential platform for controlling light propagation and fast–slow light switching.
基金supported by the Natural Science Foundation of Guangxi Province,China(Grant Nos.2018GXNSFBA281003,2019GXNSFAA245034,and AD19245180)Science Fund of Tonghua Normal University(Grant No.202017ND)。
文摘The ideal optomechanically induced transparency effects of an output probe field are investigated in a cavity optoelectromechanical system,which is composed of an optical cavity,a charged mechanical resonator,and a charged object.Although the charged mechanical resonator damping rate is nonzero,the ideal optomechanically induced transparency can still appear due to the non-rotating wave approximation effect in the system.The location of optomechanically induced transparency dip can be controlled via the Coulomb coupling strength.In addition,we find that both the transparency window width and the maximum dispersion curve slope are closely related to the optical cavity decay rate.
文摘We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system.For atom-field interaction,we construct a spatially dependent field by superimposing three standing-wave fields(SWFs)in 3D-atom localization.We achieve a high precision and high spatial resolution of an atom localization by appropriately adjusting the system variables such as field intensities and phase shifts.We also see the impact of Doppler shift and show that it dramatically deteriorates the precision of spatial information on 3D-atom localization.We believe that our suggested scheme opens up a fascinating way to improve the atom localization that supplies some practical applications in atom nanolithography,and Bose-Einstein condensation.
基金supported by the National 863 Program of China (2011AA10A101)the Chinese High-Yielding Transgenic Program (2011ZX08001-004)a project of the State Key Laboratory of Rice Biology,China(ZZKT201101)
文摘Quantitative trait loci(QTL) for percentage of chalky grain,degree of chalkiness,and endosperm transparency were detected using 3 recombinant inbred line populations derived from crosses between parental lines of commercial three-line hybrids of indica rice.Two of the populations showed great variations on heading date,and the other had a short range of heading date variation.A total of 40 QTLs were detected and fell into 15 regions of 10 chromosomes,of which 5 regions were detected for 1 or more same traits over different populations,2 were detected for different traits in different populations,3 were detected for 2 or all the 3 traits in a single population,and 5 were detected for a single trait in a single population.Most of these QTLs have been reported previously,but a region located on the long arm of chromosome 10 showing significant effects in all the 3 populations has not been reported before.It was shown that a number of gene cloned,including the Wx and Alk for the physiochemical property of rice grain,and GW2,GS3 and GW5 for grain weight and grain size,could have played important roles for the genetic control of grain chalkiness in rice,but there are many more QTLs exerting stable effects for rice chalkiness over different genetic backgrounds.It is worth paying more attentions to these regions which harbor QTL such as the qPCG5.2/qDC5.2/qET5.2 and qPCG10/qDC10/qET10 detected in our study.Our results also showed that the use of segregating populations having high-uniform heading date could greatly increase the efficiency of the identification of QTL responsible for traits that are subjected to great environmental influence.
文摘“Common but differentiated responsibilities and respective capabilities”(CBDRRC) is the most significant guiding principle in the international climate change regime, created by the United Nations Framework Convention on Climate Change in 1992 and inherited by the Paris Agreement 24 years later. This paper examines the operationalization of the CBDRRC principle in one of the cornerstone rules of the regimedits transparency provisions, both in existing practice under the convention and possible evolvement in negotiations under the Paris Agreement, from the perspectives of both international rule-making and domestic implementation. The authors have found a continuous enhancement of the transparency framework since the 1990s, and gradual consolidation of a bifurcated system between developed and developing countries into a common one. The authors argue that the transparency framework, as part of the procedural rules, should be designed to facilitate transparent information sharing in accordance with substantive commitments under international climate change laws. Thus, it indirectly reflects historical responsibilities for climate change, while the framework should also be designed as feasible and reflective of the respective capabilities of nations. Finally, the evolution of the transparency framework will aim to enact common and enhanced provisions while differentiating between developed and developing countries in the near term, and greater transparency-related capacity-building for developing countries.
基金Research in the Lemmon/Bixby lab is supported by NIH grants NS080145 and NS059866by the Miami Project to Cure Paralysis
文摘Progress in developing robust therapies for spinal cord injury (SCI), trau- matic brain injury (TBI) and peripheral nerve injury has been slow. A great deal has been learned over the past 30 years regarding both the intrinsic factors and the environmental factors that regulate axon growth, but this large body of information has not yet resulted in clinically available thera- peutics. This therapeutic bottleneck has many root causes, but a consensus is emerging that one contributing factor is a lack of standards for experi- mental design and reporting. The absence of reporting standards, and even of commonly accepted definitions of key words, also make data mining and bioinformatics analysis of neural plasticity and regeneration difficult, if not impossible. This short review will consider relevant background and poten- tial solutions to this problem in the axon regeneration domain.
基金supported by the Educational Commission of Zhejiang Province of China under Grant No.Y202147553.
文摘Supply Chain Finance(SCF)refers to the financial service in which banks rely on core enterprises to manage the capital flow and logistics of upstream and downstream enterprises.SCF adopts a self-testing and closed-loop credit model to control funds and risks.The key factor in a successful SCF service is the deployment of SCF businessoriented information systems that allow businesses to form partnerships efficiently and expedite cash flows throughout the supply chain.Blockchain Technology(BCT),featuring decentralization,tamper-proofing,traceability,which is usually paired with the Internet of Things(IoT)in real-world contexts,has been widely adopted in the field of finance and is perfectly positioned to facilitate innovative collaborations among participants in supply chain networks.In this paper,we propose a BCT and IoT-based information management framework(named BC4Regu),which works as the regulatory to improve the information transparency in the business process of SCF.With BC4Regu,the operation cost of the whole supply chain can be significantly reduced through the coordination and integration of capital flow,information flow,logistics and trade flow in the supply chain.The contributions in this paper include:(1)proposing a novel information management framework which leverages Blockchain and IoT to solve the problem of information asymmetry in the trade of SCF;(2)proposing the technical design of BC4Regu,including the Blockchain infrastructure,distributed ledger-based integrated data flow service,and reshaped SCF process;and(3)applying BC4Regu to a group of scenarios and conducting theoretical analysis by introducing the principal-agent model to validate the BC4Regu.
基金supported by the National Natural Science Foundation of China(Grant No.61307052)the Youth Funding for Science&Technology Innovation in Nanjing University of Aeronautics and Astronautics,China(Grant No.NS2014039)+3 种基金the Chinese Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20123218110017)the Innovation Program for Graduate Education of Jiangsu Province,China(Grant Nos.KYLX 0272,CXZZ13 0166,and CXLX13 155)the Open Research Program in National State Key Laboratory of Millimeter Waves of China(Grant No.K201609)the Fundamental Research Funds for the Central Universities of China(Grant No.kfjj20150407)
文摘A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is nu- merically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect cou- pling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574188)the Project for Excellent Research Team of the National Natural Science Foundation of China(Grant No.61121064)
文摘A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a threelevel atomic system coupled by standing wave.We show an accurate theoretical simulation via transfer-matrix theory,automatically accounting for multilayer reflections,thus fully demonstrate the existence of photonic crystal structure in atomic vapor.
文摘Commentary Most would agree that providing comprehensive detail in scientific reporting is critical for the development of mean- ingful therapies and treatments for diseases. Such stellar practices 1) allow for reproduction of experiments to con- firm results, 2) promote thorough analyses of data, and 3) foster the incremental advancement of valid approaches. Unfortunately, most would also agree we have far to go to reach this vital goal (Hackam and Redelmeier, 2006; Prinz et al., 2011; Baker et al., 2014).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61205096 and 61271066)
文摘A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in Universities(No: IRT0422) and the Spe-cial Funds for Major State Basic Research Projects(No. G1999064803).
文摘A series of transparent ABS(T-ABS) resins were prepared by emulsion in situ suspension polymerization. The influences of the particle size and the content of rubber particles on the transparency of T-ABS resins were studied by varying the size and content of rubber particles in a single model system(rubber particles with a uniform size). The optical properties of T-ABS resins were investigated in a mixed system of SBR/PB particles and a hi-modal particle system(rubber particles with two different sizes, 70 and 400 nm in diameter) of SBR particles. It was found that when the size of the smaller particles ( 70 nm) in the mixed system of SBR/PB particles was in the range of 50-100 nm in diameter, the T-ABS resins showed a better transparency. These results provide a flexible and practical process for the preparation of T-ABS resins with good optical and mechanical properties.
基金Project(2018JJ4086)supported by the Natural Science Foundation of Hunan Province,ChinaProject(520)supported by the Training and Innovation Base for Graduate of Education Department of Hunan Province,China+1 种基金Project(201802368048)supported by Industry-University Cooperation and Education Project of National Education Department,ChinaProject(CSUZC201925)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.
基金UGC (ERO) for granting a minor research project (F. No. PSW: 050(2015–16), date-16/11/2016)UGC (New Delhi) for providing research fellowship (JRF-NET, vide sanction No. F.17-124/2008(SAI) dated 22/08/2014)+1 种基金SERB for granting a project under Teaching Associateship for Research Excellence (TARE) scheme (sanction no. TAR/2018/000710)the University Grants Commission (New Delhi) for sanctioning a major research project (F. No-43–527/2014(SR) dated 28/09/2015).
文摘The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the probe response is derived analytically from the optical Bloch equations under steady state condition to study the absorptive properties of the system under probe field propagation through an ensemble of stationary atoms as well as in a Doppler broadened atomic vapor medium.The most striking result is the conversion of electromagnetically induced transparency(EIT)into electromagnetically induced absorption(EIA)as we start switching from weak probe regime to strong probe regime.The dependence of this conversion on residual Doppler averaging due to wavelength mismatch is also shown by choosing the coupling transition as a Rydberg transition.
基金United States Office of Naval Research-Global(ONR-G)(N629091812140)。
文摘Transparency is a widely used but poorly defined term within the explainable artificial intelligence literature.This is due,in part,to the lack of an agreed definition and the overlap between the connected—sometimes used synonymously—concepts of interpretability and explainability.We assert that transparency is the overarching concept,with the tenets of interpretability,explainability,and predictability subordinate.We draw on a portfolio of definitions for each of these distinct concepts to propose a human-swarm-teaming transparency and trust architecture(HST3-Architecture).The architecture reinforces transparency as a key contributor towards situation awareness,and consequently as an enabler for effective trustworthy human-swarm teaming(HST).
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11174051,11004026,11074034,and 61271057)the National Basic Research Program of China (Grant No.2010CB923401)the Youth Study Plan from Southeast University
文摘Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large group index accom- panied with a sharp EIT-like transparency window offers potential applications for slowing down light and sensing.