In this paper, a new trust region algorithm for unconstrained LC1 optimization problems is given. Compare with those existing trust regiion methods, this algorithm has a different feature: it obtains a stepsize at eac...In this paper, a new trust region algorithm for unconstrained LC1 optimization problems is given. Compare with those existing trust regiion methods, this algorithm has a different feature: it obtains a stepsize at each iteration not by soloving a quadratic subproblem with a trust region bound, but by solving a system of linear equations. Thus it reduces computational complexity and improves computation efficiency. It is proven that this algorithm is globally convergent and locally superlinear under some conditions.展开更多
In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best ite...In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best iterative point being on the boundary. By doing these, the trust region subproblems are constructed at a new way different with the traditional ones. Then, we test the efficiency of the new line search and trust region algorithm on some standard benchmarking. The computational results reveal that, for most test problems, the number of function and gradient calculations are reduced significantly.展开更多
A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm i...A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm is proved under the same conditions of usual trust region method.展开更多
In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming proble...In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.展开更多
We propose a retrospective trust region algorithm with the trust region converging to zero for the unconstrained optimization problem. Unlike traditional trust region algo- rithms, the algorithm updates the trust regi...We propose a retrospective trust region algorithm with the trust region converging to zero for the unconstrained optimization problem. Unlike traditional trust region algo- rithms, the algorithm updates the trust region radius according to the retrospective ratio, which uses the most recent model information. We show that the algorithm preserves the global convergence of traditional trust region algorithms. The superlinear convergence is also proved under some suitable conditions.展开更多
Provides information on a study which presented a trust region approach for solving nonlinear constrained optimization. Algorithm of the trust region approach; Information on the global convergence of the algorithm; N...Provides information on a study which presented a trust region approach for solving nonlinear constrained optimization. Algorithm of the trust region approach; Information on the global convergence of the algorithm; Numerical results of the study.展开更多
A trust region algorithm for equality constrained optimization is proposed, which is a nonmonotone one in a certain sense. The augmented Lagrangian function is used as a merit function. Under certain conditions, the g...A trust region algorithm for equality constrained optimization is proposed, which is a nonmonotone one in a certain sense. The augmented Lagrangian function is used as a merit function. Under certain conditions, the global convergence theorems of the algorithm are proved.展开更多
Presents information on a study which analyzed an interior trust-region-based algorithm for linearly constrained minimization problems. Optimality conditions for the linearly constrained minimization problem presented...Presents information on a study which analyzed an interior trust-region-based algorithm for linearly constrained minimization problems. Optimality conditions for the linearly constrained minimization problem presented; Vectors for each updating step in the algorithm proposed; Establishment of the convergence properties of the proposed algorithm.展开更多
The image restoration problems play an important role in remote sensing and astronomical image analysis. One common method for the recovery of a true image from corrupted or blurred image is the least squares error (L...The image restoration problems play an important role in remote sensing and astronomical image analysis. One common method for the recovery of a true image from corrupted or blurred image is the least squares error (LSE) method. But the LSE method is unstable in practical applications. A popular way to overcome instability is the Tikhonov regularization. However, difficulties will encounter when adjusting the so-called regularization parameter a. Moreover, how to truncate the iteration at appropriate steps is also challenging. In this paper we use the trust region method to deal with the image restoration problem, meanwhile, the trust region subproblem is solved by the truncated Lanczos method and the preconditioned truncated Lanczos method. We also develop a fast algorithm for evaluating the Kronecker matrix-vector product when the matrix is banded. The trust region method is very stable and robust, and it has the nice property of updating the trust region automatically. This releases us from tedious finding the regularization parameters and truncation levels. Some numerical tests on remotely sensed images are given to show that the trust region method is promising.展开更多
A class of nonmonotone trust region algorithms is presented for unconstrained optimizations. Under suitable conditions, the global and Q quadratic convergences of the algorithm are proved. Several rules of choosing tr...A class of nonmonotone trust region algorithms is presented for unconstrained optimizations. Under suitable conditions, the global and Q quadratic convergences of the algorithm are proved. Several rules of choosing trial steps and trust region radii are also discussed.展开更多
In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method simila...In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm may not only keep the robust properties of the algorithm given by Yuan, but also have some advantages led by the nonmonotone technique. Under very mild conditions, global convergence for the algorithm is given. Numerical experiments demonstrate the efficiency of the algorithm.展开更多
In this note, we consider the following constrained optimization problem (COP) min f(x), x∈Ωwhere f(x): R^n→R is a continuously differentiable function on a closed convex set Ω. Forthe constrained optimization pro...In this note, we consider the following constrained optimization problem (COP) min f(x), x∈Ωwhere f(x): R^n→R is a continuously differentiable function on a closed convex set Ω. Forthe constrained optimization problem (COP), a class of nonmonotone trust region algorithmsis proposed in sec. 1. In sec. 2, the global convergence of this class of algorithms isproved. In sec. 3, some results about the Cauchy point are provided. The展开更多
In this note, the following unconstrained nonsmooth optimization problem is considered where f(x):R^n→R is only a locally Lipschitzian function. Many papers appear on the convergence properties of the trust region al...In this note, the following unconstrained nonsmooth optimization problem is considered where f(x):R^n→R is only a locally Lipschitzian function. Many papers appear on the convergence properties of the trust region algorithm to solve several different particular nonsmooth problems. Dennis, Li and Tapia proposed a general trust region model by using regular functions. They proved the global convergence of the general trust region model under some mild conditions which are shown to be satisfied by many trust region algorithms including smooth one. Qi and Sun provided another trust region model展开更多
A trust region algorithm is proposed for solving bilevel programming problems where the lower level programming problem is a strongly convex programming problem with linear constraints. This algorithm is based on a tr...A trust region algorithm is proposed for solving bilevel programming problems where the lower level programming problem is a strongly convex programming problem with linear constraints. This algorithm is based on a trust region algorithm for nonsmooth unconstrained optimization problems, and its global convergence is also proved.展开更多
In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorith...In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.展开更多
为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明...为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明)。我们指出在该文献的假设条件下,按照其思路不能证明出相应的结果。本文提出了不同的参数假设,并证明了算法具有类似的迭代复杂度。展开更多
文摘In this paper, a new trust region algorithm for unconstrained LC1 optimization problems is given. Compare with those existing trust regiion methods, this algorithm has a different feature: it obtains a stepsize at each iteration not by soloving a quadratic subproblem with a trust region bound, but by solving a system of linear equations. Thus it reduces computational complexity and improves computation efficiency. It is proven that this algorithm is globally convergent and locally superlinear under some conditions.
文摘In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best iterative point being on the boundary. By doing these, the trust region subproblems are constructed at a new way different with the traditional ones. Then, we test the efficiency of the new line search and trust region algorithm on some standard benchmarking. The computational results reveal that, for most test problems, the number of function and gradient calculations are reduced significantly.
文摘A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm is proved under the same conditions of usual trust region method.
基金Supported by the National Natural Science Foundation of China(No.11171348,11171252 and 71232011)
文摘In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.
文摘We propose a retrospective trust region algorithm with the trust region converging to zero for the unconstrained optimization problem. Unlike traditional trust region algo- rithms, the algorithm updates the trust region radius according to the retrospective ratio, which uses the most recent model information. We show that the algorithm preserves the global convergence of traditional trust region algorithms. The superlinear convergence is also proved under some suitable conditions.
基金Chinese NSF grants 19525101, 19731001, and by State key project 96-221-04-02-02. It is also partially supported by Hebei provi
文摘Provides information on a study which presented a trust region approach for solving nonlinear constrained optimization. Algorithm of the trust region approach; Information on the global convergence of the algorithm; Numerical results of the study.
基金Project supported by the National Natural Science Foundation of China and Postdoctoral Foundation of China.
文摘A trust region algorithm for equality constrained optimization is proposed, which is a nonmonotone one in a certain sense. The augmented Lagrangian function is used as a merit function. Under certain conditions, the global convergence theorems of the algorithm are proved.
基金Research partially supported by the Faculty Research Grant RIG-35547 and ROG-34628 of the University of North Texas and in part by the Cornell Theory Center which receives major funding from the National Science Foundation and IBM Corporation with ad
文摘Presents information on a study which analyzed an interior trust-region-based algorithm for linearly constrained minimization problems. Optimality conditions for the linearly constrained minimization problem presented; Vectors for each updating step in the algorithm proposed; Establishment of the convergence properties of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.19731010 and 10231060)the Knowledge Innovation Program of CAS+1 种基金was supported by SRF for ROSS,SEM partially supported by the Special Innovation Fund for graduate students of CAS.
文摘The image restoration problems play an important role in remote sensing and astronomical image analysis. One common method for the recovery of a true image from corrupted or blurred image is the least squares error (LSE) method. But the LSE method is unstable in practical applications. A popular way to overcome instability is the Tikhonov regularization. However, difficulties will encounter when adjusting the so-called regularization parameter a. Moreover, how to truncate the iteration at appropriate steps is also challenging. In this paper we use the trust region method to deal with the image restoration problem, meanwhile, the trust region subproblem is solved by the truncated Lanczos method and the preconditioned truncated Lanczos method. We also develop a fast algorithm for evaluating the Kronecker matrix-vector product when the matrix is banded. The trust region method is very stable and robust, and it has the nice property of updating the trust region automatically. This releases us from tedious finding the regularization parameters and truncation levels. Some numerical tests on remotely sensed images are given to show that the trust region method is promising.
文摘A class of nonmonotone trust region algorithms is presented for unconstrained optimizations. Under suitable conditions, the global and Q quadratic convergences of the algorithm are proved. Several rules of choosing trial steps and trust region radii are also discussed.
基金This work was done when the author was studying in the State Key Laboratory of Scientific and Engi- neering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, P. O. Box 2719, Beijing 10008
文摘In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm may not only keep the robust properties of the algorithm given by Yuan, but also have some advantages led by the nonmonotone technique. Under very mild conditions, global convergence for the algorithm is given. Numerical experiments demonstrate the efficiency of the algorithm.
基金Project supported by the National Natural Science Foundation of China and Postdoctoral Foundation of China.
文摘In this note, we consider the following constrained optimization problem (COP) min f(x), x∈Ωwhere f(x): R^n→R is a continuously differentiable function on a closed convex set Ω. Forthe constrained optimization problem (COP), a class of nonmonotone trust region algorithmsis proposed in sec. 1. In sec. 2, the global convergence of this class of algorithms isproved. In sec. 3, some results about the Cauchy point are provided. The
文摘In this note, the following unconstrained nonsmooth optimization problem is considered where f(x):R^n→R is only a locally Lipschitzian function. Many papers appear on the convergence properties of the trust region algorithm to solve several different particular nonsmooth problems. Dennis, Li and Tapia proposed a general trust region model by using regular functions. They proved the global convergence of the general trust region model under some mild conditions which are shown to be satisfied by many trust region algorithms including smooth one. Qi and Sun provided another trust region model
文摘A trust region algorithm is proposed for solving bilevel programming problems where the lower level programming problem is a strongly convex programming problem with linear constraints. This algorithm is based on a trust region algorithm for nonsmooth unconstrained optimization problems, and its global convergence is also proved.
基金Supported by CERG: CityU 101005 of the Government of Hong Kong SAR, Chinathe National Natural ScienceFoundation of China, the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No.20040319003)the Natural Science Fund of Jiangsu Province of China (Grant No. BK2006214)
文摘In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.
文摘为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明)。我们指出在该文献的假设条件下,按照其思路不能证明出相应的结果。本文提出了不同的参数假设,并证明了算法具有类似的迭代复杂度。