期刊文献+
共找到1,318篇文章
< 1 2 66 >
每页显示 20 50 100
Hydraulicity of Wet-milling Ultra-fine Grouting Cement
1
作者 陈友治 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期70-72,共3页
The physical and mechanical properties of wet-milling ultra-fine grouting cement were studied,and its microstructure was observed through modern instrumentation analysis such as scanning electronic microscopy(SEM),X-r... The physical and mechanical properties of wet-milling ultra-fine grouting cement were studied,and its microstructure was observed through modern instrumentation analysis such as scanning electronic microscopy(SEM),X-ray diffraction and Hg-intrusion micromeritics.The experimental results indicate that wet-milling ultra-fine cement possesses high rheological properties and groutability.It can be filled densely in cracks of rock and hydrate fully,which may endow hydrated cement with high mechanical strength.Main hydration products of wet-milling ultra-fine cement are poorly crystalline C-S-H(Ⅰ),acicular AFt and plank-shape Ca(OH)_2.The dense crystal-network structure can be formed in the rock gaps filled with cement paste,but some weak regions exist owing to Ca(OH)_2.The features of micro-pore structure of hydrated wet-milling ultra-fine cement are few big harmful pores,abundant harmless micro pores and little most possible pore radius. 展开更多
关键词 HYDRAULICITY wet-milling ultra-fine grouting cement HYDRATION
下载PDF
The Rheological Properties of Ultra-fine High Performance Grouting Cement 被引量:1
2
作者 管学茂 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第4期48-52,共5页
The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on u... The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on ultra-fine cement rheological properties and its mechanism, were studied in material theories. The results show that the ultra-fine fly ash has a higher zeta potential, and improves flowability of ultra-fine cement paste, decreases flowability loss as time prolonging, improves compatibility between superplasticizers and cement because of the electrostatic repulsion, ball bearing effect, filling and dispersing effect of admixtures and delay-releasing effect of superplasticizers. 展开更多
关键词 high performance grouting cement ultra-fine grouting cement rheological properties
下载PDF
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks 被引量:1
3
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
下载PDF
Influence of ultra-fine fly ash on hydration shrinkage of cement paste 被引量:15
4
作者 高英力 周士琼 《Journal of Central South University of Technology》 EI 2005年第5期596-600,共5页
Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data anal... Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage. 展开更多
关键词 ultra-fine fly ash cement paste hydration shrinkage MECHANISM
下载PDF
Development of the nano-composite cement:Application in regulating grouting in complex ground conditions 被引量:4
5
作者 WANG Sheng WANG Jing-fei +3 位作者 YUAN Chao-peng CHEN Li-yi XU Shi-tong GUO Kai-bin 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1572-1584,共13页
Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages... Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages in complex ground conditions, such as loose, broken and fully fissured stratum. For the purposed of better meeting the engineering requirements, experimental studies were conducted in this study with focus on the nanocomposite grouting materials and the related controlled grouting technology. As compared with the commonly used silicate-sulpho-aluminate composite cement, which is characterized by relatively poor rheological property, quick setting time and low strength, the most suitable nano-material with proper reactants were selected intentionally to improve the mentioned attributes of composite cement. Due to the setting time and strength of the targeted cement slurry behaving with poor performance of harmonization to engineering construction problems, hydration synergistic effect of these composites were investigated in our experiments. Results showed that the properties of grouting materials, including initial fluidity, setting time, ideal right-angle thickening, and early strength and late strength were sufficient to produce an expected grouting application. It is therefore advocated that the refined grouting material could provide a better solution to fix grouting problems in complex ground cementing operations. 展开更多
关键词 NANO-SILICA Silicate-sulpho-aluminate composite cement grout Controlled grouting Complex ground conditions
下载PDF
Preparation and Performance Research of Cement-based Grouting Materials with High Early Strength and Expansion 被引量:7
6
作者 张毅 LI Wei 李东旭 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1115-1118,共4页
Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by me... Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by metakaolin and alunite was utilized for the compensation of the shrinkage, the hydration products and micro structure of the grouting materials were researched by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results showed that a high expansion rate of the grouting materials could be reached as the expanding agent mixed in 6% of PC mass; the addition of SAC in the S2(PC:SAC:EA=34:6:2.25) brought a further improvement of the expansion rate of the grouting materials, the analysis of XRD and SEM showed that due to the reaction of expanding agent and SAC in the grouting materials, more ettringite crystal was generated, which resulted in a higher early strength, the addition of SAC played an expansion and strength reinforcement role in the grouting materials. 展开更多
关键词 grouting materials expanding agent sulphoaluminate cement hydration products performance research
下载PDF
Research on rheological properties of micro-fine grouting cement 被引量:3
7
作者 管学茂 王雨利 杨雷 《Journal of Coal Science & Engineering(China)》 2003年第1期67-72,共6页
This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of... This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of modern instruments and technologies (such as XRD, SEM, laser granulometer and superficial potential apparatus etc.), the article studies the mineral compositions, the appearance character of grains, particle size distribution and superficial potential of FA and its composite materials. And through that, the reducing mechanism of FA is thoroughly analyzed. The study shows that FA and its composite admixture are excellent components which can effectively improve the rheological properties of micro fine cement, and that the superplasticizer has a saturation point and the mixing way of it has a great influence on the rheological properties. 展开更多
关键词 micro fine cement rheological properties grouting materials
下载PDF
Experimental Research on Performances of Dry-grinding Fine Cement for Grouting
8
作者 陈明祥 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期66-69,共4页
The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject r... The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject rock mass with micro fissure.In order to improve the grouting quality,the water cement ratio and discarding time of slurry should be controlled precisely.If the water cement ratio is over 2∶1 in slurry that is made from DFC,it is not suitable to grout.Finally,the influence of different mixing times on strength of hydrated cement made from the DFC is explained by microstructure analysis with SEM. 展开更多
关键词 dry grinding fine cement (DFC) grouting properties of slurry mixing time
下载PDF
Behavior of zeolite-cement grouted sand under triaxial compression test 被引量:4
9
作者 Peyman Jafarpour Reza Ziaie Moayed Afshin Kordnaeij 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期149-159,共11页
Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air p... Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air pollution induced during cement production as well as its high energy consumption,the use of supplementary materials to replace in part cement can be attractive.Natural zeolite(NZ),as an environmentally friendly material,is an alternative to reduce cement consumption.In the present study,a series of consolidated undrained(CU)triaxial tests on loose sandy soil(with relative density Dr=30%)grouted with cementitious materials(zeolite and cement)having cement replacement with zeolite content(Z)of 0%,10%,30%,50%,70%and 90%,and water to cementitious material ratios(W/CM)of 3,5 and 7 has been conducted.The results indicated that the peak deviatoric stress(qmax)of the grouted specimens increased with Z up to 50%(Z50)and then decreased.The strength of the grouted specimens reduced with increasing W/CM of the grouts from 3 to 7.In addition,by increasing the stress applied on the grouted specimens from yield stress(qy)to the maximum stress(qmax),due to the bond breakage,the effect of cohesion(c’)on the shear strength reduced gradually,while the effect of friction angle(φ’)increased.Furthermore,in some grouted specimens,high confining pressure caused breakage of the cemented bonds and reduced their expected strength. 展开更多
关键词 PERMEATION grouting SAND ZEOLITE cement IMPROVEMENT
下载PDF
Optimization of cement-based grouts using chemical additives 被引量:8
10
作者 Mohammad Reza Azadi Ali Taghichian Ali Taheri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期623-637,共15页
Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types... Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground.In grouting operations,the grout quality is important to achieve the best results.There are four main characteristics for a grout mixture including bleeding,setting time,strength,and viscosity.In this paper,we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics.The ingredients of grout mixtures built in this study are cement,water,bentonite,and some chemical additives such as sodium silicate,sodium carbonate,and triethanolamine(TEA).The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project.Effect of each abovementioned ingredient is profoundly investigated.Since each ingredient may have positive or negative aspect,an optimization of appropriate amount of each ingredient is determined.The optimization is based on 200 grout mixture samples with different percentages of ingredients.Finally,some of these grout mixtures are chosen for the introduced project.It should be mentioned that grouting operations depend on various factors such as pressure of injection,ground structure and grain size of soils.However,quality of a grout can be helpful to make an injection easier and reasonable.For example,during the injection,a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting.This paper tries to show some tests in easy way to achieve a desirable sample of grout. 展开更多
关键词 Permeation grouting BLEEDING Setting time Chemical additives cement-based grout
下载PDF
Effect of aggressive pH media on peat treated by cement and sodium silicate grout 被引量:1
11
作者 S.Kazemian A.Prasad +3 位作者 B.B.K.Huat J.Bolouri Bazaz T.A.Mohammed F.N.Abdul Aziz 《Journal of Central South University》 SCIE EI CAS 2011年第3期840-847,共8页
The effects of aggressive peat nature (pH) on the strength of peat treated by cement and cement-sodium silicate grout were investigated by evaluating the changes in unconfined compressive strength,moisture content,and... The effects of aggressive peat nature (pH) on the strength of peat treated by cement and cement-sodium silicate grout were investigated by evaluating the changes in unconfined compressive strength,moisture content,and scanning electron microscopy (SEM) of samples with time in different pH media.The results indicate that peats treated by cement-silicate have higher strength than peats treated by cement,due to an increase in pH value of the media.Furthermore,cement and cement-silicate are highly effective in reducing the moisture content and void ratio of the treated peats.The microstructures of treated peats support the laboratory test results. 展开更多
关键词 PEAT aggressive pH media cementATION sodium silicate grout microstructure
下载PDF
Mechanical Behaviors and Deformation Properties of Retaining Wall Formed by Grouting Mould-Bag Pile 被引量:1
12
作者 Shengcai Li Jun Tang Lin Guo 《Structural Durability & Health Monitoring》 EI 2019年第1期61-84,共24页
The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displ... The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displacement monitoring,deep horizontal displacement(inclinometer)monitoring,soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi,Fujian Province.The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared.The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement,so that it can rock into a retaining wall,which can both retain soil and seal water with excellent effect.The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile,but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction;and its cohesion and internal friction angle increased,so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall. 展开更多
关键词 Controlled cement grouting technology grouting mould-bag pile retaining wall mechanical behaviors deformation properties
下载PDF
Pre-reinforcement grout in fractured rock masses and numerical simulation for optimizing shrinkage stoping configuration 被引量:6
13
作者 YU Shao-feng WU Ai-xiang +1 位作者 WANG Yi-ming LI Tao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2924-2931,共8页
Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, ... Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, which needs much reinforcement and support prior to mining. Cement-sodium silicate grout technology was selected, then its related parameters such as grout pressure, diffusion radius and time were calculated and proposed. In order to test the effect of the pressured grout in the fractured No.4 ore block, field experiments were conducted. To optimize stoping configuration, three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed. The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously. After grout, ore recovery rate is increased by 10.2 % employing the newly designed stoping configuration compared with the previous. Last, analyzed from the surface movements, roof subsidence and the maximum principal stress of the pillars, the mining safety is probable of being ensured. 展开更多
关键词 SHRINKAGE STOPING mining cement-sodium SILICATE grout effect of pressured grout STOPING CONFIGURATION three-dimensional numerical simulation
下载PDF
Proportioning of Cement-Based Grout for Sealing Fractured Rock-Use of Packing Models
14
作者 Mohammed Hatem Mohammed Roland Pusch +4 位作者 Nadhir Al-Ansari Sven Knutsson Jan-Erik Jonasson Mats Emborg Alireza Pourbakhtiar 《Engineering(科研)》 2013年第10期765-774,共10页
Fractured, very permeable rock hosting repositories for radioactive waste will require grouting. New grout types of possible use where long-term performance is needed should have a small amount of cement for minimizin... Fractured, very permeable rock hosting repositories for radioactive waste will require grouting. New grout types of possible use where long-term performance is needed should have a small amount of cement for minimizing the increase in porosity that will follow from the ultimate dissolution and erosion of this component. They have to be low-viscous and gain strength early after injection and packing theory can assist designers in selecting suitable proportions of various grout components. Optimum particle packing means that the porosity is at minimum and that the amount of cement paste needed to fill the voids between aggregate particles is very small. Low porosity and microstructural stability must be guaranteed for long periods of time. Organic additives for reaching high fluidity cannot be used since they can give off colloids that carry released radionuclides and talc can be an alternative superplasticizer. Low-pH cement reacts with talc to give high strength with time while Portland cement gives early but limited strengthening. The clay mineral palygorskite can be used for early gelation because of its thixotropic properties. Once forced into the rock fractures or channels in soil it stiffens and serves as a filter that prevents fine particles to migrate through it be lost. However, its hydrophilic potential is too high to give the grout a high density and high strength. According to the experiments carried out, most of the investigated grouts are injectable in fractures with apertures down to 100 μm. 展开更多
关键词 cement grout Packing models PALYGORSKITE Strength Superplasticizer TALC Viscosity
下载PDF
Experimental Evaluation of Thermal Properties of Grouting Materials
15
作者 Manuela Campanale Marta Deganello Lorenzo Moro 《Journal of Energy and Power Engineering》 2013年第8期1457-1463,共7页
This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusi... This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material. 展开更多
关键词 Geothermal energy thermal conductivity sealant mortar hot disk grouting materials Portland cement mortar.
下载PDF
Properties and microstructure of VC/Cr_3C_2-doped WC/Co cemented carbides 被引量:8
16
作者 LEI Yiwen SUN Jing +2 位作者 DU Xiwen ZHAI Qi HU Shengliang 《Rare Metals》 SCIE EI CAS CSCD 2007年第6期584-590,共7页
This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3... This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3C2 in optimal proportion enhances both the hardness and transverse rupture strength (TRS) of the alloys, with more homogeneous microstructtLre. When the alloy is sintered at 1430℃ and with 0.5% Cr3C2/0.2% VC, the TRS reaches 3786 MPa, the hardness is 91.7 HRA and the grain size smaller than 0.6 μm. The numerical analyses on grain growth during the sintering process show that both VC precipitating on the WC grain boundary and Cr3C2 dissolving in the Co phase decrease the solid/liquid interfacial energy γ, the process of dissolution and reprecipitation is greatly retarded and the coarsening of WC grains is inhibited. 展开更多
关键词 grain growth inhibitor ultra-fine grain cemented carbides MICROSTRUCTURE transverse rupture strength (TRS)
下载PDF
Properties of cement grout modified with ultra-fine slag 被引量:1
17
作者 Sowmini GOPINATHAN K B ANAND 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期58-66,共9页
The purpose of the study is to obtain a cement grout with improved performance. The grout mixes of the present study contain cement, ultra-fine slag (UFS), super plasticizer and water. Properties like flowability, b... The purpose of the study is to obtain a cement grout with improved performance. The grout mixes of the present study contain cement, ultra-fine slag (UFS), super plasticizer and water. Properties like flowability, bleeding, compressive strength and shrinkage of cement grouts have been studied. Rheological parameters were also studied in order to explain the grout workability. The results show that, cement replacement with slag in grouts could reduce bleeding substantially without affecting the workability of the mixes. Introduction of slag enhanced the compressive strength and reduced shrinkage reasonably. Ultra-fine slag can be used as a supplementary cementitious material in cementitious grouts in order to improve the grout behavior. 展开更多
关键词 cement grout ultra-fine slag FLOWABILITY BLEEDING VISCOSITY
原文传递
Soil-cement mixture properties and design considerations for reinforced excavation 被引量:5
18
作者 Jianguo Fan Dongyuan Wang Duo Qian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期791-797,共7页
soil-cement is a mixture produced by grouting or mixing cement with soils. This paper reviews and discusses the general classifications of grouting techniques and the suitability of their applications.The mechanical p... soil-cement is a mixture produced by grouting or mixing cement with soils. This paper reviews and discusses the general classifications of grouting techniques and the suitability of their applications.The mechanical properties of soil-cement mixture and the influence of sodium silicate added are discussed. Design considerations for deep soil mixed wall(DSMW) for excavation support and vault arch for tunnelling stabilisation are presented. Parameters for the numerical analysis of soil-cement mixture are evaluated and recommended. 展开更多
关键词 grouting Soil-cement mixture Mechanical properties Deep soil mixed wall (DSMW) Vault arch
下载PDF
Plastic zone analysis and support optimization of shallow roadway with weakly cemented soft strata 被引量:1
19
作者 Zhang Jihua Wang Lianguo +1 位作者 Li Qinghai Zhu Shuangshuang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期395-400,共6页
Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to moni... Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining. 展开更多
关键词 Shallow coal seam Weakly cemented soft strata Granular material Geological radar Whole section bolting and grouting Combined supporting
下载PDF
基于RSM的超细水泥注浆材料配比及性能优化模型 被引量:1
20
作者 刘伟韬 吴海凤 申建军 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第8期146-158,共13页
注浆堵水技术已成为水害措施防范向工程治理不可缺少的技术之一,超细材料的研究也成为了目前注浆材料发展的新方向。为了解决矿井水害注浆治理工程中注浆材料优选和配比优化问题,采用单因素试验与响应曲面法(RSM)相结合的方法进行超细... 注浆堵水技术已成为水害措施防范向工程治理不可缺少的技术之一,超细材料的研究也成为了目前注浆材料发展的新方向。为了解决矿井水害注浆治理工程中注浆材料优选和配比优化问题,采用单因素试验与响应曲面法(RSM)相结合的方法进行超细水泥注浆材料优化配比研究。首先通过单因素试验对不同水灰比、硅灰(SF)掺量及高效聚羧酸减水剂(PCS)掺量条件下浆液黏度、泌水率及7 d单轴抗压强度进行分析,以确定RSM最佳基准水平,其次构建以浆液黏度、泌水率及7 d单轴抗压强度为响应目标的二次多项式预测模型,结合方差、残差及响应曲面分析各响应变量对响应目标的影响规律,确定注浆材料最优配比。通过单因素试验结果对比分析,发现最优水灰比、SF掺量及PCS掺量分别为1∶1、35%及0.3%。通过RSM研究发现,浆液黏度、泌水率及7 d单轴抗压强度不仅受单一因素影响,且存在多因素交互作用。根据建立的二次多项式响应面回归预测模型可知,当水灰比、SF掺量及PCS掺量分别为0.7∶1、38%及0.2%时,注浆材料性能最优,其回归模拟预测浆液黏度、泌水率及7 d单轴抗压强度分别为210.82 mPa·s、1.0%及12.22 MPa。通过室内试验,其结果与预测模型结果吻合度较高,进一步验证了模型的可靠性,证明了该模型能够用于注浆材料优化配比设计研究。 展开更多
关键词 响应曲面法 超细水泥浆体 陷落柱边缘岩体 注浆堵水 注浆材料
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部