期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Three-dimensional upper bound limit analysis of underground cavities using nonlinear Baker failure criterion 被引量:5
1
作者 Zhi-zhen LIU Ping CAO +2 位作者 Hang LIN Jing-jing MENG Yi-xian WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1916-1927,共12页
A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by e... A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by extending the two-dimensional(2D) failure mode, which offers an upper bound expression of the surrounding rock pressure. This method is validated with a series of examples before the influence of four parameters of scale parameter, curvature parameter, shift parameter and lateral pressure coefficient, on the surrounding rock pressure is analyzed. According to these results, failure ranges of the underground cavities are determined. The following conclusions are reached:(1) the proposed approach is more accurate to predict surrounding rock pressure than the Mohr-Coulomb failure criterion;(2) the surrounding rock with large scale parameter, curvature parameter, shift parameter, and lateral pressure coefficient can lead to a more stable underground cavity;(3) the failure range in 3D mode can be predicted according to the upper bound solutions. 展开更多
关键词 Baker failure criterion underground cavity surrounding rock pressure 3D failure mode upper bound limit analysis
下载PDF
A series solution for surface motion amplification due to underground group cavities:Incident P waves 被引量:3
2
作者 LIANG Jian-wen(梁建文) ZHANG Hao(张浩) Vincent W Lee 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第3期296-307,共12页
A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities signifi... A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities significantly am-plify the surface ground motion nearby. It is suggested that the effect of subways on ground motion should be con-sidered when the subways are planned and designed. 展开更多
关键词 underground group cavities surface motion plane P wave SCATTERING series solution CLC number: P315.3 Document code: A
下载PDF
Amplification of in-plane seismic ground motion by group cavities in layered half-space (Ⅱ): with saturated poroelastic soil layers 被引量:3
3
作者 Jianwen Liang Ji Zhang Zhenning Ba 《Earthquake Science》 CSCD 2012年第4期287-298,共12页
As the continuation study on amplification of in-plane seismic ground motion by underground group cavities in layered half-space, this study extends to the case of poroelastic half-space with dry poroelastic and satur... As the continuation study on amplification of in-plane seismic ground motion by underground group cavities in layered half-space, this study extends to the case of poroelastic half-space with dry poroelastic and saturated poroelastic soil layers. The influence of poroelastic layers on the amplification of seismic ground motion is studied both in frequency domain and time domain using indirect boundary element method (IBEM). It is shown that for the example of a saturated poroelastic site in Tianjin under the excitation of Taft wave and E1 Centro wave, the amplification of seismic ground motion in poroelastic case is slightly smaller than that in the elastic case, and the amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum).. can be increased up to 38.8% and 64.6%; the predominant period of response spectra in poroelastic case becomes shorter to some extent compared with that in the elastic case. It is suggested that the effect of underground group cavities in poroelastic half-space on design seismic ground motion should be considered. 展开更多
关键词 underground group cavity dry poroelastic saturated poroelastlc AMPLIFICATION IN-PLANE seismic ground motion indirect boundary element method (IBEM)
下载PDF
Amplification of in-plane seismic ground motion by group cavities in layered half-space (Ⅰ) 被引量:2
4
作者 Jianwen Liang Ji Zhang Zhenning Ba 《Earthquake Science》 CSCD 2012年第4期275-285,共11页
Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effec... Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effect of cavity interval and spectrum of incident waves on the amplification are studied by numerical examples. It is shown that there may be large interaction between cavities, and group cavities with certain intervals may have significant amplification to seismic ground motion. The amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum) can be increased up to 45.2% and 84.4%, for an example site in Tianjin, under the excitation of Taft wave and E1 Centro wave; and group cavities may also affect the spectra of the seismic ground motion. It is suggested that the effect of underground group cavities on design seismic ground motion should be considered. 展开更多
关键词 underground group cavity AMPLIFICATION IN-PLANE seismic ground motion time domain frequency domain indirect boundary element method (IBEM)
下载PDF
Prediction of cavity growth rate during underground coal gasification using multiple regression analysis 被引量:8
5
作者 Mehdi Najafi Seyed Mohammad Esmaiel Jalali +1 位作者 Reza KhaloKakaie Farrokh Forouhandeh 《International Journal of Coal Science & Technology》 EI 2015年第4期318-324,共7页
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by... During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR. 展开更多
关键词 underground coal gasification (UCG) - Cavity growth rate . Multiple regression analysis ~ Empirical model
下载PDF
Geophysical Investigation of the Triassic Salt Material Hazard: El Fahs Case Example (Northern Tunisia)
6
作者 Mohamed Khaled Bouzid Adel Klai +1 位作者 Romdhane Haddad Mohamed Chedly Rabia 《International Journal of Geosciences》 2020年第11期729-744,共16页
The Tunisian territory (area of diapirs) is exposed to the risks of ground movements linked to water, some of which are related to the phenomenon of dissolution of gypsum, allowing the appearance of underground caviti... The Tunisian territory (area of diapirs) is exposed to the risks of ground movements linked to water, some of which are related to the phenomenon of dissolution of gypsum, allowing the appearance of underground cavities which present natural risks and set people in danger. The analysis of the hazard was determined by the field study coupled with the application of geophysical methods to locate and map the cavities and identify their dimensions and their positions in the subsoil. In the region of El Fahs (40 km NW of Tunis): we used a non-destructive method, georadar (GPR) with a 200 MHz antenna band-width, and an electric method, by using the electric tomography of which we have applicated the sequence of dipole-dipole measurement. The results ob-tained were examined and interpreted according to 2D profiles. The geophysi-cal methods of GPR and electrical tomography aim to detect many calvities in different depths. However, the geological radar was able to identify several cavities and the zones of dissolution whose investigation depth did not exceed the first 3 meters. On the contrary, the electric tomography method allowing the presence of several deeper underground cavities with larger dimensions ex-tended to 64 meters. To conclude, the geological and hydrogeological contexts of the terrain studied and on the state of the soil and subsoil allow us to better understanding the mechanisms of the establishment of the dissolution phe-nomenon and the appearance of cavities in the basement. The analysis of the predisposing factors present in the study area shows that the geodynamic con-text of the Triassic ascent takes place according to a precise thermodynamic process that favors the phenomenon of dissolution of the gypsum. 展开更多
关键词 Triassic Materials Natural Hazards underground cavities Thermodynamic Process GPR Electric Tomography
下载PDF
Method of high-density seismic imaging exploration and application samples
7
作者 XIONG Zhang-qiang(熊章强) +7 位作者 ZHANG Xue-qiang(张学强) LI Xiu-zhong(李修忠) XIE Shang-ping(谢尚平) ZHANG Da-zhou(张大洲) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第3期344-348,共10页
The paper introduces the method of high-density seismic imaging exploration, discusses its features different from conventional shallow seismic reflection wave technique, and illustrates the application effect of the ... The paper introduces the method of high-density seismic imaging exploration, discusses its features different from conventional shallow seismic reflection wave technique, and illustrates the application effect of the method using three samples of engineering geological explorations on land and in water exploration of underground cavity, location survey of sunk ship and investigation of channel silt depth. 展开更多
关键词 high-density seismic image exploration on land exploration in water underground cavity sunk ship silt depth
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部