期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Synthesis and Flocculation of Polyacrylamide with Low Water Absorption for Non-dispersible Underwater Concrete
1
作者 LI Hongling YAN Na +2 位作者 SUN Guowen ZHENG Haorui YANG Xinyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1404-1413,共10页
The polyacrylamide which is directly added into concrete shows strong water absorption property.Thus the construction of underwater constructure would demand high amount of water,resulting in poor workability of concr... The polyacrylamide which is directly added into concrete shows strong water absorption property.Thus the construction of underwater constructure would demand high amount of water,resulting in poor workability of concrete and strength shrinkage after hardening.Herein,a kind of anionic polyacrylamide(APAM)grafted with water reducing functional group(-COOH)was synthesized at low temperatures by partial factor design and response surface design.The structure and morphology of APAM were characterized by UV,FTIR and SEM methods.The experimental results show that the molecular weight of the synthesized APAM could reach 11 million,under the condition that the temperature was 35℃,the pH value was 8,the monomer concentration was 27wt%,the initiator dosage was 0.6wt%,and the monomer ratio(n(AM):n(AA))was 3.When the APAM was applied into the underwater slurry,it presented good flocculation and low water demand.When the dosage was 1%of the mass of the cement,the water demand increased by 12%,which could meet the self-leveling and anti-dispersity of the underwater slurry at the same time.This technology provides technical guidance for the large-scale industrial production of polyacrylamide for underwater concrete construction while achieving environmental protection during production. 展开更多
关键词 non-dispersible underwater concrete anionic polyacrylamide partial factor design response surfacedesign FLOCCULATION
下载PDF
Analysis on Pore Structure of Non-Dispersible Underwater Concrete in Saline Soil Area
2
作者 Fang Liu Baomin Wang +1 位作者 Mengsai Wang Xiaosa Yuan 《Journal of Renewable Materials》 SCIE EI 2021年第4期723-742,共20页
In this paper,mercury intrusion porosimetry(MIP)is used to test the pore structure of non-dispersible underwater concrete so as to study the influence of pouring and curing environment,age and slag powder on the pore ... In this paper,mercury intrusion porosimetry(MIP)is used to test the pore structure of non-dispersible underwater concrete so as to study the influence of pouring and curing environment,age and slag powder on the pore characteristics of concrete,analyze the pore characteristics,porosity and pore distribution of concrete in different hydration stages,and reveal the relationship between pore structure and permeability of concrete.The results show that the pore-size distribution of concrete in fresh water condition is better than that in sulfate environment and mixed salt environment,and therefore,sulfate as well as mixed salt are not conducive to the development of pore structure of non-dispersible underwater concrete;chlorine salt has little effect on the pore structure of nondispersible underwater concrete;under the three conditions of sulfate,chlorine and mixed salt,the porosity of concrete mixed with slag powder is lower than that of concrete without slag powder.The results indicate that the addition of slag powder can ameliorate the pore size distribution of non-dispersed underwater concrete,reduce the porosity,and make the concrete structure more compact,which is beneficial to improve the permeability resistance of concrete at the macro level. 展开更多
关键词 Non-dispersible underwater concrete slag powder saline soil mercury intrusion porosimetry(mip) pore structure
下载PDF
Effect of GGBS on performance deterioration of non-dispersible underwater concrete in saline soil
3
作者 Fang Liu BaoMin Wang +2 位作者 GuoRong Tao Tao Luo XiaoSa Yuan 《Research in Cold and Arid Regions》 CSCD 2022年第2期120-137,共18页
In saline soil areas,there are a large number of ions in soil or water environments,such as Cl^(-)and SO_(4)^(2-),which have strong corrosive interactions with buildings.To study the deterioration of non-dispersible u... In saline soil areas,there are a large number of ions in soil or water environments,such as Cl^(-)and SO_(4)^(2-),which have strong corrosive interactions with buildings.To study the deterioration of non-dispersible underwater concrete in sulfate,chloride,and mixed salt environments,the compressive strength and deterioration resistance coefficient of the studied concrete mixed with different amounts of ground granulated blast-furnace slag(GGBS)were analyzed in this paper.At the same time,the micro morphology and corrosion products distribution of the studied concrete were observed by means of SEM,plus XRD diffraction,TG-DTG and FT-IR analyses to explore the influence of corrosive solutions on the hydration products of concrete.We also analyzed the mechanism of improving the deterioration resistance of the studied concrete by adding GGBS in a saline soil environment.The results show that the compressive strength of the studied concrete in a chloride environment was close to that in a fresh water environment,which means that chloride has no adverse effect on compressive strength.The deterioration of the studied concrete was most serious in a sulfate environment,followed by mixed salt environment,and the lowest in a chloride environment.In addition,by adding GGBS,the compressive strength and deterioration resistance of the studied concrete could be effectively improved. 展开更多
关键词 saline soil non-dispersible underwater concrete granulated blast furnace slag deterioration resistance mechanism analysis
下载PDF
Preparation of High Performance Non-dispersible Concrete 被引量:1
4
作者 姜丛盛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期67-69,共3页
A new-type underwater non-dispersible concrete admixture NDA was prepared,its function mechanism was analyzed,and C40 high performance non-dispersible underwater concrete was manufactured by applying NDA.The results i... A new-type underwater non-dispersible concrete admixture NDA was prepared,its function mechanism was analyzed,and C40 high performance non-dispersible underwater concrete was manufactured by applying NDA.The results indicate that NDA has a suitable workability,low strength loss,and excellent anti-dispersion;the fresh non-dispersible underwater concrete with NDA has high anti-dispersion,excellent workability such as self-compacting and not bleeding;hardened non-dispersible underwater concrete with NDA has a high strength,high durability such as high anti-abrasion,impermeability and anticorrosion. 展开更多
关键词 non-dispersible underwater concrete high performance ANTI-WASHOUT
下载PDF
Influence of Hydrostatic Pressure on Compressive Strength of Self-consolidating Concrete
5
作者 Elzbieta Horszczaruk Piotr Brzozowski +1 位作者 Grzegorz Adamczewski Tomasz Rudnicki 《Journal of Civil Engineering and Architecture》 2014年第12期1549-1555,共7页
The design of unique chamber, in which the SCUWC (self-consolidating underwater concrete) can be tested under the impact of the hydrostatic pressure from 0.1 MPa to 0.5 MPa, is presented in the paper. The results of... The design of unique chamber, in which the SCUWC (self-consolidating underwater concrete) can be tested under the impact of the hydrostatic pressure from 0.1 MPa to 0.5 MPa, is presented in the paper. The results of the preliminary tests of the effect of the hydrostatic pressure on the compressive strength of SCUWC were shown. The impact of the hydrostatic pressure on the compressive strength values of test specimens has been confirmed. There has been an increase in the strength of the specimens taken from the upper parts of the concrete samples. As it can be seen from the preliminary research, the differences in compressive strength are related to the differences that occur in the size and distribution of air voids in the samples taken from upper and lower parts of the test specimens. On the basis of the carried out investigations of the compressive strength, it can be concluded that the hydrostatic pressure has a favorable effect on the compressive strength of the tested specimens of SCUWC. Increase of the compressive strength is observed mostly in the upper layers of the samples. Preliminary analysis of the quantity and distribution of air pores in the samples of concrete subjected to pressure 0.5 MPa confirms the positive impact of the hydrostatic pressure on the layers close to the surface indicated by the absence of large air voids above 1,500μm and by reducing the quantity of air pores of size above 300μm. 展开更多
关键词 Compressive strength hydrostatic pressure self-consolidating concrete underwater concrete air voids.
下载PDF
Crack detection for wading-concrete structures using water irrigation and electric heating
6
作者 Jiang CHEN Zizhen ZENG +2 位作者 Ying LUO Feng XIONG Fei CHENG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第3期368-377,共10页
Cracking in wading-concrete structures has a worse impact on structural safety compared with conventional concrete structures.The accurate and timely monitoring of crack development plays a significant role in the saf... Cracking in wading-concrete structures has a worse impact on structural safety compared with conventional concrete structures.The accurate and timely monitoring of crack development plays a significant role in the safety of wading-concrete engineering.The heat-transfer rate near a crack is related to the flow velocity of the fluid in the crack.Based on this,a novel crack-identification method for underwater concrete structures is presented.This method uses water irrigation to generate seepage at the interface of a crack;then,the heat-dissipation rate in the crack area will increase because of the convective heat-transfer effect near the crack.Crack information can be identified by monitoring the cooling law and leakage flow near cracks.The proposed mobile crack-monitoring system consists of a heating system,temperature-measurement system,and irrigation system.A series of tests was conducted on a reinforcedconcrete beam using this system.The crack-discrimination indexψwas defined,according to the subsection characteristics of the heat-source cooling curve.The effects of the crack width,leakage flow,and relative positions of the heat source and crack onψwere studied.The results showed that the distribution characteristics ofψalong the monitoring line could accurately locate the crack,but not quantify the crack width.However,the leakage flow is sensitive to the crack width and can be used to identify it. 展开更多
关键词 structural health monitoring underwater concrete structure fiber Bragg grating crack detection temperature tracer method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部