期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
Unloading and successful treatment with bioresorbable stents during percutaneous coronary intervention:A case report 被引量:2
1
作者 Tao Sun Ming-Xue Zhang +7 位作者 Yan Zeng Li-Hua Ruan Yi Zhang Cheng-Long Yang Zhang Qin Jing Wang Hai-Mei Zhu Yun Long 《World Journal of Cardiology》 2024年第8期484-490,共7页
BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.... BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading. 展开更多
关键词 Coronary artery diseases Percutaneous coronary intervention Bioresorbable stents Stent unloading Stent release Intravascular ultrasound Case report
下载PDF
Experimental study on the effect of unloading rate on gneiss rockburst 被引量:1
2
作者 Dongqiao Liu Jie Sun +4 位作者 Ran Li Manchao He Binghao Cao Chongyuan Zhang Wen Meng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2064-2076,共13页
Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of u... Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity. 展开更多
关键词 ROCKBURST unloading rate Crack propagation Influence mechanisms
下载PDF
Mechanical properties and energy evolution of Beishan shallow-layer granite under different unloading paths
3
作者 WANG Chuanle LI Erbing +4 位作者 ZHANG Dengke HAN Yang LU Hui HE Kang DU Guangyin 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1728-1744,共17页
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte... Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ. 展开更多
关键词 Beishan granite unloading test Mechanical properties Damage mechanism Acoustic emission Strain energy
下载PDF
Effects of dry-wet cycles on the mechanical properties of sandstone with unloading-induced damage
4
作者 NAN Gan ZHANG Jiaming +2 位作者 LUO Yi WANG Xinlong HU Zhongyi 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3474-3486,共13页
Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as eng... Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as engineering excavations.Furthermore,this degradation is further exacerbated under periodic dry-wet environmental conditions.This study investigated the effects of dry-wet cycles and unloading on the mechanical properties of jointed fine sandstone using uniaxial and triaxial compression tests.These tests were performed on rock samples subjected to varying unloading degrees and different numbers of dry-wet cycles.The results demonstrate that with an increase in the unloading degree from 0%to 70%,there is a corresponding decrease in peak stress ranging from 10%to 33%.Additionally,the cohesion exhibits a reduction of approximately 20%to 25%,while the internal friction angle experiences a decline of about 3.5%to 6%.These findings emphasize a significant unloading effect.Moreover,the degree of peak stress degradation in unloading jointed fine sandstone diminishes with an increase in confining pressure,suggesting that confining pressure mitigates the deterioration caused by dry-wet cycles.Additionally,as the number of dry-wet cycles increases,there is a notable decline in the mechanical properties of the sandstone,evidencing significant dry-wet degradation.Utilizing the Drucker Prager criterion,this study establishes a strength criterion and fracture criterion,denoted as σ_(1)(m,n) and K_(T)^(Ⅱ)(m, n), to quantify the combined impacts of dry-wet cycles and unloading on jointed fine sandstone,which provides a comprehensive understanding of its mechanical behavior under such conditions. 展开更多
关键词 unloading Dry-wet cycle Jointed fine sandstone Strength criterion fracture criterion Mechanical properties
下载PDF
Bioresorbable stent unloading during percutaneous coronary intervention:Early detection and management
5
作者 Nabil Eid Mohamed Abdel Wahab Amardev Singh Thanu 《World Journal of Cardiology》 2024年第10期616-618,共3页
In this letter,we comment on a recent case report by Sun et al in the World Journal of Cardiology.The report describes the successful management of a rare complication:The unloading or detachment of a bioresorbable st... In this letter,we comment on a recent case report by Sun et al in the World Journal of Cardiology.The report describes the successful management of a rare complication:The unloading or detachment of a bioresorbable stent(BRS)during percutaneous coronary intervention(PCI)in a male patient.The unloading of BRS was detected via angiography and intravascular ultrasound(IVUS)imaging of the left coronary artery and left anterior descending artery.Although this case is interesting,the authors’report lacked crucial details.Specifically,insufficient information about the type of BRS used,potential causes of BRS unloading,or whether optical coherence tomography(OCT)imaging for coronary arteries was performed before,during,or after PCI.The OCT imaging of coronary arteries before PCI can potentially prevent BRS unloading due to its higher resolution compared to IVUS.In addition,despite detecting myocardial bridging during the PCI,the authors did not provide any details regarding this variation.Here we discuss the various types of BRS,the importance of OCT in PCI,and the clinical relevance of myocardial bridging. 展开更多
关键词 Coronary artery diseases Percutaneous coronary intervention Optical coherence tomography Bioresorbable/Biodegradable stents Stent unloading/detachment Myocardial bridge Intravascular ultrasound Coronary angiography
下载PDF
Deformation and damage properties of rock-like materials subjected to multi-level loading-unloading cycles
6
作者 Zhizhen Liu Ping Cao +2 位作者 Qingxiong Zhao Rihong Cao Fei Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1768-1776,共9页
In the process of engineering construction such as tunnels and slopes,rock mass is frequently subjected to multiple levels of loading and unloading,while previous research ignores the impact of unloading rate on the s... In the process of engineering construction such as tunnels and slopes,rock mass is frequently subjected to multiple levels of loading and unloading,while previous research ignores the impact of unloading rate on the stability of rock mass.A number of uniaxial multi-level cyclic loading-unloading experiments were conducted to better understand the effect of unloading rate on the deformation behavior,energy evolution,and damage properties of rock-like material.The experimental results demonstrated that the unloading rate and relative cyclic number clearly influence the deformation behavior and energy evo-lution of rock-like samples.In particular,as the relative cyclic number rises,the total strain and reversible strain both increase linearly,while the total energy density,elastic energy density,and dissipated energy density all rise nonlinearly.In contrast,the irreversible strain first decreases quickly,then stabilizes,and finally rises slowly.As the unloading rate increases,the total strain and reversible strain both increase,while the irreversible strain decreases.The dissipated energy damage was examined in light of the aforementioned experimental findings.The accuracy of the proposed damage model,which takes into account the impact of the unloading rate and relative cyclic number,is then confirmed by examining the consistency between the model predicted and the experimental results.The proposed damage model will make it easier to foresee how the multi-level loading-unloading cycles will affect the rock-like materials. 展开更多
关键词 Incremental cyclic loading-unloading unloading rate Strain characteristics Energy evolution Damage model
下载PDF
In-situ observations of damage-fracture evolution in surrounding rock upon unloading in 2400-m-deep tunnels 被引量:10
7
作者 Haosen Guo Qiancheng Sun +2 位作者 Guangliang Feng Shaojun Li Yaxun Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期437-446,共10页
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu... The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction. 展开更多
关键词 Deep tunnel Fractured zone Damaged zone In-situ observation unloading of rock mass
下载PDF
Experimental study on failure characteristics of single-sided unloading rock under different intermediate principal stress conditions 被引量:6
8
作者 Chongyan Liu Guangming Zhao +4 位作者 Wensong Xu Xiangrui Meng Zhixi Liu Xiang Cheng Gang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期275-287,共13页
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial... Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity. 展开更多
关键词 Single-sided unloading Acoustic emission True triaxial Intermediate principal stress Stress intensity factor
下载PDF
Experimental study on unloading induced shear performances of 3D saw-tooth rock fractures 被引量:4
9
作者 Qian Yin Xinxin Nie +3 位作者 Jiangyu Wu Qi Wang Kaiqi Bian Hongwen Jing 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期463-479,共17页
A fractal model governing saw-tooth fractures was first introduced to replicate sandstone samples containing an inclined 3D penetrating rough fracture surface with various joint roughness coefficients(JRC).In conventi... A fractal model governing saw-tooth fractures was first introduced to replicate sandstone samples containing an inclined 3D penetrating rough fracture surface with various joint roughness coefficients(JRC).In conventional triaxial compression,the peak strength for fractured samples increased with both confining pressure and JRC.During the unloading confining pressure process,the normal stress of fractures declined but the shear stress increased,resulting in shear sliding of fractures.The shear displacement of fractures exponentially increased,and the positive normal displacement decreased gradually to negative values under coupling effects of shear contraction caused by normal stress and shear dilation due to climbing effects of fractures.Transition from quasi-static to dynamic sliding of the fractures was identified.The sliding resistance duration increased with confining pressure but decreased with JRC.After prepeak unloading,the fracture surfaces presented a more significant surface wear response and JRC values decreased by 1.70%–59.20%due to more remarkable asperity degradation compared with those after conventional triaxial compression.The theoretical model for shear strength of fractures was established through improving the Ladanyi&Archambault model by introducing the relations between normal stress and surface wear ratios of fractures,which agreed well with the experimental results. 展开更多
关键词 Saw-tooth fracture surfaces Pre-peak unloading Shear sliding Normal displacement JRC values
下载PDF
Mechanical behavior of sandstone during post-peak cyclic loading and unloading under hydromechanical coupling 被引量:3
10
作者 Yanlin Zhao Jinhai Liu +4 位作者 Chunshun Zhang Houquan Zhang Jian Liao Sitao Zhu Lianyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期927-947,共21页
This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sands... This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established. 展开更多
关键词 Post-peak stage Cyclic loading and unloading Hydromechanical coupling SANDSTONE Water pressure
下载PDF
Shear sliding of rough-walled fracture surfaces under unloading normal stress 被引量:3
11
作者 Qian Yin Chun Zhu +5 位作者 Jiangyu Wu Hai Pu Qi Wang Yuanchao Zhang Hongwen Jing Tianci Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2658-2675,共18页
Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r... Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress. 展开更多
关键词 unloading normal stress Rough fracture surface Shear sliding Normal displacement Shear wear characteristics
下载PDF
Rockburst process and strength-weakening effect of the high-stress circular tunnel under internal unloading 被引量:2
12
作者 Fengqiang Gong Wuxing Wu Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期864-885,共22页
To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the ... To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the entire stress path of“high initial stressþinternal unloadingþstress adjustment”(HUS test)was realized for the intact cubic red sandstone samples(100 mm×100 mm×100 mm).Comparative tests were conducted on cubic red sandstone samples with prefabricated circular holes(425 mm)under the stress path of“prefabricated circular hole+þhigh initial stress+stress adjustment”(PHS test),thereby highlighting the influence of internal unloading on rockburst failure.The test results revealed that with an increase in vertical stress,the sidewalls in both the HUS and PHS tests suffered strain rockburst failure.Compared with the PHS test,the initial failure stress in the HUS test is lower,and it is easier to induce sidewall rockbursts.This indicates that the internal unloading influences the sidewall failure,causing an obvious strength-weakening effect,which becomes more significant with an increase in buried depth.The strain rockburst failure was more severe in the HUS test owing to the influence of internal unloading.V-shaped rockburst pits were formed in the HUS tests,whereas in the PHS test,arcshaped rockburst pits were produced.It was also found that strain rockburst failure may occur only when the rock has a certain degree of rockburst proneness. 展开更多
关键词 ROCKBURST unloading Strength-weakening effect Deep rock V-shaped notch Circular tunnel
下载PDF
Influence of volume compression on the unloading deformation behavior of red sandstone under damage-controlled cyclic triaxial loading 被引量:2
13
作者 Huaizhong Liu Jianliang Pei +3 位作者 Jianfeng Liu Mingli Xiao Li Zhuo Hongqiang Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1200-1212,共13页
A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the dam... A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the damage-controlled cyclic triaxial loading tests were conducted to investigate the pore compaction mechanism and its influences on the unloading deformation behavior of red sandstone,including Young’s modulus,Poisson’s ratio,volumetric strain,and irreversible strain.The experimental results show that the increases of volumetric and irreversible strains of rocks can be attributed to the compaction mechanism,which almost dominates the entire pre-peak deformation process.The unloading deformation consists of the reversible linear and nonlinear strains,and the irreversible strain under the influence of the porous grain structure.The pre-peak Young’s modulus tends to increase and then decrease due to the influence of the unloading irreversible strain.However,it hardly changes with the increasing volumetric strain compaction under the influence of reversible nonlinear strain.Instead,the initial unloading tangent modulus is highly related to the volumetric strain,and clearly reflects the compaction state of red sandstone.Furthermore,both the reversible nonlinear and irreversible unloading deformations are independent of confining pressure.This study is beneficial for the theoretical modeling and prediction of cyclic unloading deformation behavior of red sandstone. 展开更多
关键词 Cyclic loading tests Compaction mechanism Volumetric strain unloading tangent modulus Red sandstone
下载PDF
Morphological evolution and flow conduction characteristics of fracture channels in fractured sandstone under cyclic loading and unloading 被引量:1
14
作者 Quanle Zou Zihan Chen +4 位作者 Jinfei Zhan Chunmei Chen Shikang Gao Fanjie Kong Xiaofeng Xia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1527-1540,共14页
In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels... In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels in rocks on fluids is significant for gas flow in rock strata.In this regard,graded incremental cyclic loading and unloading experiments were conducted on sandstones with different initial stress levels.Then,the three-dimensional models for fracture channels in sandstones were established.Finally,the fracture channel percentages were used to reflect the flow conductivity of fracture channels.The study revealed how the particle size distribution of fractured sandstone affects the formation and expansion of fracture channels.It was found that a smaller proportion of large blocks and a higher proportion of small blocks after sandstone fails contribute more to the formation of fracture channels.The proportion of fracture channels in fractured rock can indicate the flow conductivity of those channels.When the proportion of fracture channels varies gently,fluids flow evenly through those channels.However,if the proportion of fracture channels varies significantly,it can greatly affect the flow rate of fluids.The research results contribute to revealing the morphological evolution and flow conductivity of fracture channels in sandstone and then provide a theoretical basis for clarifying the gas flow pattern in the rock strata of coal mines. 展开更多
关键词 CT imaging Flow conductivity Three-dimensional reconstruction Proportion of fracture channels Cyclic loading and unloading
下载PDF
Mechanical and hydraulic properties of fault rocks under multi‑stage cyclic loading and unloading 被引量:1
15
作者 Wentao Hou Dan Ma +3 位作者 Qiang Li Jixiong Zhang Yong Liu Chenyao Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期151-170,共20页
The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock durin... The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function. 展开更多
关键词 Multi-stage cyclic loading and unloading Fault rocks Mechanical properties Hydraulic properties Energy dissipation
下载PDF
Mechanical performances of shield tunnel segments under asymmetric unloading induced by pit excavation 被引量:1
16
作者 Gang Wei Feifan Feng +2 位作者 Chengbao Hu Jiaxuan Zhu Xiao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1547-1564,共18页
To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-develo... To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-developed“shield tunnel segment hydraulic loading system”was used to carry out full-scale loading tests on the three-ring staggered assembled segments.The structural performances and failure process of the tunnel segment under step-by-step asymmetric unloading were studied.A safety index was proposed to describe the bearing capacity of the segment.Next,a finite element model(FEM)was established to analyze the bearing capacity of segment using the test results.Finally,the effect of reinforcement with a steel plate on the deformation and bearing capacity of the segment was analyzed.The results showed that under asymmetric unloading,the peak value and amplitude of the bending moment on the near unloading side converged with a greater value than those on the far side.The concrete internal force exhibited a directional transformation at different load stages.Cracks first appeared at the 180inner arc surface of the bottom standard block and then expanded to both sides,while the rate of crack propagation of the outer arc surface was relatively lower.The bearing capacity of the segments can be evaluated by the combination of the factors,e.g.the residual bearing capacity coefficient,moment transfer coefficient,and characterization coefficient.The segments approaching failure can facilitate the increase in the residual bearing capacity coefficient by more than 50%.This can provide guidance for the service assessment of metro tunnel operations. 展开更多
关键词 Shield tunnel segment Full-scale test Asymmetric unloading Stress and deformation Safety index
下载PDF
Unloading damage patterns of rock slopes in open pit mines and analyses of their mechanisms
17
作者 WANG Jian-ming ZHOU Zi-han +1 位作者 DOU Wei CHEN Zhong-hui 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3648-3664,共17页
The stability of slopes is essential for ensuring safe production in open-pit mines.Analyzing and managing the deformation and failure of the slope rock mass becomes more challenging as the slope height increases.To i... The stability of slopes is essential for ensuring safe production in open-pit mines.Analyzing and managing the deformation and failure of the slope rock mass becomes more challenging as the slope height increases.To investigate the damage patterns of slopes with varying heights,three slope models were developed based on a rock slope in Dagushan,China.The deformation failure processes of slopes under the influence of excavation and unloading were analyzed using the base friction test method in combination with digital image technology contrasting.The results supported the following findings:(1)Unloading tensile stress caused lateral partitioning in the slope.Both the foot and top of the slope underwent initial tensile cracks.(2)The destabilization mechanism of unloading deformation in slopes of different heights involved a combination of traction at the foot of the slope or pushing at the top of the slope,followed by accelerated deformation,deceleration creep,and overall destabilization.(3)The unloading damage patterns of slopes at different heights were summarized as follows:compression tension cracking,traction,and slip damage for medium and low slopes;compression tension cracking,traction,and slip failure for the upper part of high slopes;and relaxation tension cracking,pushing,traction,and slip failure for the lower part.Moreover,the upper part of ultra-high slopes exhibited compression tension cracking,traction,and slip failure,while the middle and lower parts displayed relaxation tension cracking,pushing,traction,and slip patterns.Finally,numerical simulations were conducted to verify the results of the test analyses,which demonstrated good consistency.These research results were of great engineering value for proposing effective safety management measures for high slopes. 展开更多
关键词 Excavation and unloading Displacement field Deformation mechanism Damage pattern Base friction test
下载PDF
Wellbore stability model in shale formation under the synergistic effect of stress unloading-hydration
18
作者 DING Yi LIU Xiangjun +5 位作者 LIANG Lixi XIONG Jian LI Wei WEI Xiaochen DUAN Xi HOU Lianlang 《Petroleum Exploration and Development》 SCIE 2023年第6期1478-1486,共9页
According to the transversely isotropic theory and weak plane criterion, and considering the mechanical damages due to stress unloading and hydration during drilling, a shale wellbore stability model with the influenc... According to the transversely isotropic theory and weak plane criterion, and considering the mechanical damages due to stress unloading and hydration during drilling, a shale wellbore stability model with the influence of stress unloading and hydration was established using triaxial test and shear test. Then, factors influencing the wellbore stability in shale were analyzed. The results indicate that stress unloading occurs during drilling in shale. The larger the confining pressure and axial stress, the more remarkable weakening of shale strength caused by stress unloading. The stress unloading range is positively correlated with the weakening degree of shale strength. Shale with a higher development degree of bedding is more prone to damage along bedding. In this case, during stress unloading, the synergistic effect of weak structural plane and stress unloading happens, leading to a higher weakening degree of shale strength and poorer mechanical stability, which brings a higher risk of wellbore instability. Fluid tends to invade shale through bedding, promoting the shale hydration. Hydration also can weaken shale mechanical stability, causing the decline of wellbore stability. Influence of stress unloading on collapse pressure of shale mainly occurs at the early stage of drilling, while the influence of hydration on wellbore stability mainly happens at the late stage of drilling. Bedding, stress unloading and hydration jointly affect the wellbore stability in shale. The presented shale wellbore stability model with the influence of stress unloading and hydration considers the influences of the three factors. Field application demonstrates that the prediction results of the model agree with the actual drilling results, verifying the reliability of the model. 展开更多
关键词 SHALE DRILLING BEDDING stress unloading HYDRATION shale strength wellbore stability
下载PDF
Unloading-induced permeability recovery in rock fractures
19
作者 Tao Lin Wen Meng +5 位作者 Yuedu Chen Zhihong Zhao Bing Liu Jintong Zhang Sicong Chen Xingguang Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3148-3162,共15页
Underground space creation and energy extraction, which induce unloading on rock fractures, commonly occur in various rock engineering projects, and rock engineering projects are subjected to high temperatures with in... Underground space creation and energy extraction, which induce unloading on rock fractures, commonly occur in various rock engineering projects, and rock engineering projects are subjected to high temperatures with increasing depth. Fluid flow behavior of rock fractures is a critical issue in many subsurface rock engineering projects. Previous studies have extensively considered permeability evolution in rock fractures under loading phase, whereas changes in fracture permeability under unloading phase have not been fully understood. To examine the unloading-induced changes in fracture permeability under different temperatures, we performed water flow-through tests on fractured rock samples subjected to decreasing confining pressures and different temperatures. The experimental results show that the permeability of fracture increases with unloading of confining pressure but decreases with loading-unloading cycles. Temperature may affect fracture permeability when it is higher than a certain threshold. An empirical model of fracture hydraulic aperture including two material parameters of initial normal stiffness and maximum normal closure can well describe the permeability changes in rough rock fracture subjected to loading-unloading cycles and heating. A coupled thermo-mechanical model considering asperity damage is finally used to understand the influences of stress paths and temperatures on fracture permeability. 展开更多
关键词 unloading PERMEABILITY Rock fracture Temperature Empirical model
下载PDF
Dynamic responses and failure mechanisms of the existing tunnel under transient excavation unloading of an adjacent tunnel
20
作者 Ying Xu Junxi Tang +3 位作者 Yuchao Yu Wei Yao Bangbiao Wu Kaiwen Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2930-2942,共13页
Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by usin... Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by using the drill and blast tunneling(D&B).However,the dynamic response and failure mechanism of surrounding rocks of the existing tunnel caused by adjacent transient excavation are not clear due to the difficulty in conducting field tests and laboratory experiments.Therefore,a novel transient unloading experimental system for deep tunnel excavation was proposed in this study.The real stress path and the unloading rate can be reproduced by using this proposed system.The experiments were conducted for observing the dynamic response of the existing tunnel induced by adjacent transient excavation under different lateral pressure coefficients l(?0.4,0.6,0.8,1,1.2,1.4,1.6,1.8)with a polymethyl methacrylate(PMMA)specimen.The propagation of the impact wave and unloading surface wave was detected through the digital image correlation(DIC)analysis.The reflection of the unloading surface wave on the incident side of the existing tunnel(tunnel-E)was observed and analyzed.Moreover,the dynamic characteristics of the stress redistribution,the particle displacement and vibration velocity of surrounding rocks of tunnel-E were analyzed and summarized.In addition,the Mohr-Coulomb(MeC)failure criterion with tension cut-off was adopted to evaluate the stability of the existing tunnel under adjacent transient excavation.The results indicate that the incident side of the existing tunnel under the dynamic disturbance of transient excavation of an adjacent tunnel was more prone to fail,followed by the shadow side and the top/bottom side. 展开更多
关键词 Tunnel groups Transient unloading Lateral pressure coefficient Stress redistribution Peak particle velocity(PPV)
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部