为了快速得到用户关心的信息,根据用户浏览内容和浏览行为建立兴趣模型,并在用户访问时根据兴趣模型自动向其进行文章推荐的方式得到了越来越多的运用.本文在前人研究的基础上,对于兴趣模型的构建进行了系统阐述,提出一种基于时间元的...为了快速得到用户关心的信息,根据用户浏览内容和浏览行为建立兴趣模型,并在用户访问时根据兴趣模型自动向其进行文章推荐的方式得到了越来越多的运用.本文在前人研究的基础上,对于兴趣模型的构建进行了系统阐述,提出一种基于时间元的合理量化兴趣度值的方法,同时据此扩展了VSM(Vector Space M odel)文本表示模型,并引入了主题兴趣度的概念.实验结果显示通过该方法构建的兴趣模型能够较好的区分和把握用户的不同兴趣,准确率较高.展开更多
用户兴趣模型能够极大的提高用户利用互联网的效率。目前的兴趣模型表示方法大多只包含不同兴趣主题的内容信息,而没有对不同兴趣主题之间进行一定的重要程度区分。在传统的VSM(Vector Space Model)向量中引入了兴趣度因子,进一步提出...用户兴趣模型能够极大的提高用户利用互联网的效率。目前的兴趣模型表示方法大多只包含不同兴趣主题的内容信息,而没有对不同兴趣主题之间进行一定的重要程度区分。在传统的VSM(Vector Space Model)向量中引入了兴趣度因子,进一步提出了主题兴趣度的概念并对主题兴趣度的提取方法进行了详细描述。实验结果表明,通过该方法建立的兴趣模型,能够较好的区分用户的不同兴趣,更加符合实际。展开更多
传统协同过滤算法大多是围绕如何降低评分误差展开研究,未涉及用户评分过程。本文考虑到用户评分动机和用户本身评分倾向的情况,将用户评分过程分为用户评分和物品选择两个阶段,从预测用户兴趣概率和用户效用角度出发,采用潜在狄利克雷...传统协同过滤算法大多是围绕如何降低评分误差展开研究,未涉及用户评分过程。本文考虑到用户评分动机和用户本身评分倾向的情况,将用户评分过程分为用户评分和物品选择两个阶段,从预测用户兴趣概率和用户效用角度出发,采用潜在狄利克雷分布模型(LDA)挖掘出用户潜在高效用因子和物品被靶向概率因子,进而将两种因子加权融合作为第一阶段;第二阶段采用奇异值分解预测用户评分值并根据该评分值选择物品。综上,本文提出一种加权高效用因子的两阶段混合推荐算法(hybrid recommendation algorithm based on two-phase weighted high utility factor,Htp_Uf)。在 MovieLens数据集上,实验结果表明,该算法在归一化累计折损增益(NDCG)和 1-Call两种评价标准下优于其他4种推荐算法,能够有效提高推荐质量。展开更多
文摘为了快速得到用户关心的信息,根据用户浏览内容和浏览行为建立兴趣模型,并在用户访问时根据兴趣模型自动向其进行文章推荐的方式得到了越来越多的运用.本文在前人研究的基础上,对于兴趣模型的构建进行了系统阐述,提出一种基于时间元的合理量化兴趣度值的方法,同时据此扩展了VSM(Vector Space M odel)文本表示模型,并引入了主题兴趣度的概念.实验结果显示通过该方法构建的兴趣模型能够较好的区分和把握用户的不同兴趣,准确率较高.
文摘用户兴趣模型能够极大的提高用户利用互联网的效率。目前的兴趣模型表示方法大多只包含不同兴趣主题的内容信息,而没有对不同兴趣主题之间进行一定的重要程度区分。在传统的VSM(Vector Space Model)向量中引入了兴趣度因子,进一步提出了主题兴趣度的概念并对主题兴趣度的提取方法进行了详细描述。实验结果表明,通过该方法建立的兴趣模型,能够较好的区分用户的不同兴趣,更加符合实际。
文摘传统协同过滤算法大多是围绕如何降低评分误差展开研究,未涉及用户评分过程。本文考虑到用户评分动机和用户本身评分倾向的情况,将用户评分过程分为用户评分和物品选择两个阶段,从预测用户兴趣概率和用户效用角度出发,采用潜在狄利克雷分布模型(LDA)挖掘出用户潜在高效用因子和物品被靶向概率因子,进而将两种因子加权融合作为第一阶段;第二阶段采用奇异值分解预测用户评分值并根据该评分值选择物品。综上,本文提出一种加权高效用因子的两阶段混合推荐算法(hybrid recommendation algorithm based on two-phase weighted high utility factor,Htp_Uf)。在 MovieLens数据集上,实验结果表明,该算法在归一化累计折损增益(NDCG)和 1-Call两种评价标准下优于其他4种推荐算法,能够有效提高推荐质量。