Natural ventilation effects in high and large space buildings of tropical areas greatlya ffect the air conditioning energy consumption.Aiming at nearly zero energy building design,thisp aper mainly contributes to prov...Natural ventilation effects in high and large space buildings of tropical areas greatlya ffect the air conditioning energy consumption.Aiming at nearly zero energy building design,thisp aper mainly contributes to provide theoretical basis and reference for thermal comfortable air conditioning system design of high and large space buildings.Taking a theatre in Hainan as study object,a newly composite enhanced natural ventilation system is proposed by integrating theu nderground tunnel-based earth to air heat exchange system and the solar chimney.Ventilationq uantity,air velocity and air temperature field,human vertical temperature gradient differenceu nder24simulation working conditions are considered and analyzed by using ANSYS Fluent.Fort he underground tunnel,results show that Group Two with double underground tunnels and side airs upply location shows its advantages in cooling effects and air supply uniformity.Then for the solar chimney,results show that the solar radiation intensity contributes to larger difference int ransmission power and leads to different cooling effects.On the whole,the system under workingc ondition No.7with120m long,side air supply,double underground tunnel and20m high,1mw ide,0.6°absorber plate angle solar chimney shows its priority in better comprehensive performance.展开更多
Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation sy...Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation system.However,it is difficult to make an effective evaluation of ventilation system due to the lack of classification criteria with respect to underground metal mine in alpine region.This paper proposes a novel evaluation method called the cloud model-clustering analysis(CMCA).Cloud model(CM)is utilized to process collected data of ventilation system,and they are converted into cloud descriptors by CM.Cloud similarity(CS)based Euclidean distance(ED)is proposed to make clustering analysis of assessed samples.Then the classification of assessed samples will be identified by clustering analysis results.A case study is developed based on CMCA.Evaluation results show that ventilation effectiveness can be well classified.Moreover,CM is used alone to make comparison of evaluation results obtained by CMCA.Then the availability and validity of CMCA is verified.Meanwhile,difference of CS based ED and classical ED is analyzed.Two new clustering analysis methods are introduced to make comparison with CMCA.Then the ability of proposed CMCA to meet evaluation requirements of ventilation system is verified.展开更多
A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a min...A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a mine, operators need to know the cause and effect of any changes requested from the VOD system. The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system. This new utility, which was incorporated in the 3D-CANVENT mine ventilation simulator, is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed. For a primary ventilation system, the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally. An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively, while generating significant savings in energy consumption and operating cost.展开更多
This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over ...This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.展开更多
Based on the basic content of advanced technology,safety and reliability, and economic reasonability and the definition of mine ventilation system, 16 assessment indexes of ventilation system are put forward from the ...Based on the basic content of advanced technology,safety and reliability, and economic reasonability and the definition of mine ventilation system, 16 assessment indexes of ventilation system are put forward from the point of 8 aspects such as mine ventilation power, ventilation network, ventilation equipments, ventilation quality, ventilation monitoring, capacity of preventing and fighting disaster, ventilation consumption of power, and the capacity of ventila- tion system. A new assessment index system is put forward and has a good effect after being applied in coal mines.展开更多
Based on mine fire fighting practices at the 1110 working face of the Brapukuria Coal Mine,Bangladesh,we introduce and discuss the Y-Inversion Ventilation System,the latest technology used both in mine fire zone manag...Based on mine fire fighting practices at the 1110 working face of the Brapukuria Coal Mine,Bangladesh,we introduce and discuss the Y-Inversion Ventilation System,the latest technology used both in mine fire zone management and the unsealing process.This ventilation system can ensure that all miners breathed fresh air,providing protection for them during fire fighting and unsealing the fire zone.On the other hand,adjusting the amount of air at the working face and forming a CO leakage path controlled the state of the fire and as well ensured that the different fire extinguishing measures could be applied successfully.These are all fundamental techniques which ensured successful fire extinguishing and unsealing of the fire zone.We also analyzed the main reasons for the spontaneous coal combustion that occurred at the 1110 working face.Successful application of advanced composite polymer colloidal perfusion techniques,polymer foam MEA perfusion and fire-prevention technology by infusing nitrogen,used in mine fire zone management and unsealing,are presented.We value the experience with these techniques very highly and are of the opinion that these techniques could be widely used in mine fire fighting practices under similar spontaneous coal combustion conditions elsewhere.展开更多
Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel...Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel 30110 of the #3-1 coal seam, which is about 30-40 rn below the heating goaf of the #2-2 seam at Longhua underground coal mine, Shanxi Province, China. Booster fans and ventilation control devices such as doors and regulators were used in the system. The results show that, provided that a force auxiliary ventilation system is properly designed to achieve a pressure balance between a panel and its overlying goat', the system can be used to extract a coal seam overlain by a heating goal. This paper describes the design, installation and performance of the ventilation system during the extraction and recovery phases of the oanel 30110.展开更多
To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consist...To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.展开更多
The stability of ventilation system includes stabilities of branch, network and main fan. The ventilation system is a dynamic process. The parameters in the ventilation system vary with time. In the paper, a group of ...The stability of ventilation system includes stabilities of branch, network and main fan. The ventilation system is a dynamic process. The parameters in the ventilation system vary with time. In the paper, a group of mathematical models of quantitative analysis are set up, and the mathematical models are suitable to any ventilation system.展开更多
A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an important meaning to evaluate the security of a mine ventilation system. Th...A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an important meaning to evaluate the security of a mine ventilation system. This paper studied the evaluation index system of the security of a mine ventilation system, and the security of a mine ventilation system was described quantitatively in the safety degree. Finally, an example of the security evaluation was given.展开更多
To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air ...To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.展开更多
Indoor CO2 concentration depends on the number of persons, their metabolic rates, other sources of indoor pollution, ventilation rate and ventilation efficiency. These factors are not considered by the Spanish technic...Indoor CO2 concentration depends on the number of persons, their metabolic rates, other sources of indoor pollution, ventilation rate and ventilation efficiency. These factors are not considered by the Spanish technical building code since ventilation is set only by a fixed air change rate. This paper aims to explore the possibilities of DCVS (demand controlled ventilation systems) to ensure adequate and sustainable ventilation. It is based on a research project carried out by the University of the Basque Country (EHU-UPV) and Euskadi Public Housing and Soil Join-Stock Company (VISESA): the living rooms of 90 dwellings were provided with DCVS, where CO2 sensors were used to dynamically control the ventilation rate. Tests were carried out using tracer gas techniques, with results showing the air age to be adequate at every point of the occupied zones and free of stagnant areas, therefore proving the system's effectiveness and rapid response, and its energy savings.展开更多
In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, ...In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.展开更多
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre...In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.展开更多
Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diff...Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors.展开更多
This paper proposes numerical investigations carried out on a small scale tunnel model airing to study the fire-induced smoke control by longitudinal and longitudinal-natural ventilation systems. We studied the effect...This paper proposes numerical investigations carried out on a small scale tunnel model airing to study the fire-induced smoke control by longitudinal and longitudinal-natural ventilation systems. We studied the effect of two ventilation systems on the temperature distribution and stratification of the pollutant to estimate the efficiency of ventilation systems. The flow is characterized by the temperature fields, temperature profiles and the Froude number. The numerical tool used is FDS (version 4.0). This numerical study requires validation with an experience of literature. Good agreement with experimental results confirms the possibility of using this code in the problem.展开更多
A pressure controlled mechanical ventilator with an automatic secretion clearance function can improve secretion clearance safely and efficiently.Studies on secretion clearance by pressure controlled systems show that...A pressure controlled mechanical ventilator with an automatic secretion clearance function can improve secretion clearance safely and efficiently.Studies on secretion clearance by pressure controlled systems show that these are suited for clinical applications.However,these studies are based on a single lung electric model and neglect the coupling between the two lungs.The research methods applied are too complex for the analysis of a multi-parameter system.In order to understand the functioning of the human respiratory system,this paper develops a dimensionless mathematical model of doublelung mechanical ventilation system with a secretion clearance function.An experiment is designed to verify the mathematical model through comparison of dimensionless experimental data and dimensionless simulation data.Finally,the coupling between the two lungs is studied,and an orthogonal experiment designed to identify the impact of each parameter on the system.展开更多
A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And th...A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.展开更多
A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And th...A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.展开更多
A mathematical model of mechanical ventilator describes its behavior during artificial ventilation. This paper purposes to create and simulate Mathematical Model (MM) of Pressure Controlled Ventilator (PCV) signal. Th...A mathematical model of mechanical ventilator describes its behavior during artificial ventilation. This paper purposes to create and simulate Mathematical Model (MM) of Pressure Controlled Ventilator (PCV) signal. This MM represents the respiratory activities and an important controlled parameter during mechanical ventilation—Positive End Expiration Pressure (PEEP). The MM is expressed and modelled using periodic functions with inequalities to control the beginning of inspiration and expiration durations. The created MM of PCV signal is combined with an existing multi compartmental model of respiratory system that is modified and developed in the internal parameters—compliances (C) to test created MM. The created MM and model of respiratory system are constructed and simulated using Simulink package in MATLAB platform. The obtained simulator of mechnical ventilation system could potentially represent the pressure signal of PVC as a complete respiratory cycle and continuance waveform. This simulator is also able to reflect a respiratory mechanic by changing some input variables such as inspiration pressure (IP), PEEP and C, which are monitored in volume, flow, pressure and PV loop waveforms. The obtained simulator has provided a simple environment for testing and monitoring PCV signal and other parameters (volume, flow and dynamic compliance) during artificial ventilation. Furthermore, the simulator may be used for studying in the laboratory and training ventilator’s operators.展开更多
基金Sponsored by the National Natural Science Foundation of Guangdong Province(Grant No.2020A1515011092)the Open Projects Fund of KeyL aboratory of Ecology and Energy-saving Study of Dense Habitat(Tongji University),Ministry of Education(Grant No.2020030105)。
文摘Natural ventilation effects in high and large space buildings of tropical areas greatlya ffect the air conditioning energy consumption.Aiming at nearly zero energy building design,thisp aper mainly contributes to provide theoretical basis and reference for thermal comfortable air conditioning system design of high and large space buildings.Taking a theatre in Hainan as study object,a newly composite enhanced natural ventilation system is proposed by integrating theu nderground tunnel-based earth to air heat exchange system and the solar chimney.Ventilationq uantity,air velocity and air temperature field,human vertical temperature gradient differenceu nder24simulation working conditions are considered and analyzed by using ANSYS Fluent.Fort he underground tunnel,results show that Group Two with double underground tunnels and side airs upply location shows its advantages in cooling effects and air supply uniformity.Then for the solar chimney,results show that the solar radiation intensity contributes to larger difference int ransmission power and leads to different cooling effects.On the whole,the system under workingc ondition No.7with120m long,side air supply,double underground tunnel and20m high,1mw ide,0.6°absorber plate angle solar chimney shows its priority in better comprehensive performance.
基金Project(2018YFC0808404)supported by National Key Research and Development Program of China。
文摘Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation system.However,it is difficult to make an effective evaluation of ventilation system due to the lack of classification criteria with respect to underground metal mine in alpine region.This paper proposes a novel evaluation method called the cloud model-clustering analysis(CMCA).Cloud model(CM)is utilized to process collected data of ventilation system,and they are converted into cloud descriptors by CM.Cloud similarity(CS)based Euclidean distance(ED)is proposed to make clustering analysis of assessed samples.Then the classification of assessed samples will be identified by clustering analysis results.A case study is developed based on CMCA.Evaluation results show that ventilation effectiveness can be well classified.Moreover,CM is used alone to make comparison of evaluation results obtained by CMCA.Then the availability and validity of CMCA is verified.Meanwhile,difference of CS based ED and classical ED is analyzed.Two new clustering analysis methods are introduced to make comparison with CMCA.Then the ability of proposed CMCA to meet evaluation requirements of ventilation system is verified.
文摘A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a mine, operators need to know the cause and effect of any changes requested from the VOD system. The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system. This new utility, which was incorporated in the 3D-CANVENT mine ventilation simulator, is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed. For a primary ventilation system, the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally. An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively, while generating significant savings in energy consumption and operating cost.
基金the National Natural Science Foundation of China(No.11902153)the Natural Science Foundation of Jiangsu Province(No.BK20190378)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.
基金Project 0424220161 supported by Science and Technology Foundation of Education Bureau of Henan Province
文摘Based on the basic content of advanced technology,safety and reliability, and economic reasonability and the definition of mine ventilation system, 16 assessment indexes of ventilation system are put forward from the point of 8 aspects such as mine ventilation power, ventilation network, ventilation equipments, ventilation quality, ventilation monitoring, capacity of preventing and fighting disaster, ventilation consumption of power, and the capacity of ventila- tion system. A new assessment index system is put forward and has a good effect after being applied in coal mines.
基金supported by the Key Laboratory Opening Fund of Coalmine Gas & Fire Protection of Henan Province (No.HKLGF200702)
文摘Based on mine fire fighting practices at the 1110 working face of the Brapukuria Coal Mine,Bangladesh,we introduce and discuss the Y-Inversion Ventilation System,the latest technology used both in mine fire zone management and the unsealing process.This ventilation system can ensure that all miners breathed fresh air,providing protection for them during fire fighting and unsealing the fire zone.On the other hand,adjusting the amount of air at the working face and forming a CO leakage path controlled the state of the fire and as well ensured that the different fire extinguishing measures could be applied successfully.These are all fundamental techniques which ensured successful fire extinguishing and unsealing of the fire zone.We also analyzed the main reasons for the spontaneous coal combustion that occurred at the 1110 working face.Successful application of advanced composite polymer colloidal perfusion techniques,polymer foam MEA perfusion and fire-prevention technology by infusing nitrogen,used in mine fire zone management and unsealing,are presented.We value the experience with these techniques very highly and are of the opinion that these techniques could be widely used in mine fire fighting practices under similar spontaneous coal combustion conditions elsewhere.
基金supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents and Science Research Innovative Group of Resources and Environment Engineering College of Shandong University of Science and Technology (No. 2012ZHTD06)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2013RCJJ049)+1 种基金the China Postdoctoral Science Foundation (No. 2013M541942)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133718120013)
文摘Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel 30110 of the #3-1 coal seam, which is about 30-40 rn below the heating goaf of the #2-2 seam at Longhua underground coal mine, Shanxi Province, China. Booster fans and ventilation control devices such as doors and regulators were used in the system. The results show that, provided that a force auxiliary ventilation system is properly designed to achieve a pressure balance between a panel and its overlying goat', the system can be used to extract a coal seam overlain by a heating goal. This paper describes the design, installation and performance of the ventilation system during the extraction and recovery phases of the oanel 30110.
基金supported by the National Natural Science Foundation of China(Nos.51304128 and 51674158)the Natural Science Foundation of Shandong Province(No.ZR2013EEQ015)
文摘To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.
文摘The stability of ventilation system includes stabilities of branch, network and main fan. The ventilation system is a dynamic process. The parameters in the ventilation system vary with time. In the paper, a group of mathematical models of quantitative analysis are set up, and the mathematical models are suitable to any ventilation system.
文摘A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an important meaning to evaluate the security of a mine ventilation system. This paper studied the evaluation index system of the security of a mine ventilation system, and the security of a mine ventilation system was described quantitatively in the safety degree. Finally, an example of the security evaluation was given.
基金National Natural Science Foundation of China(No.51278094)the Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.
文摘Indoor CO2 concentration depends on the number of persons, their metabolic rates, other sources of indoor pollution, ventilation rate and ventilation efficiency. These factors are not considered by the Spanish technical building code since ventilation is set only by a fixed air change rate. This paper aims to explore the possibilities of DCVS (demand controlled ventilation systems) to ensure adequate and sustainable ventilation. It is based on a research project carried out by the University of the Basque Country (EHU-UPV) and Euskadi Public Housing and Soil Join-Stock Company (VISESA): the living rooms of 90 dwellings were provided with DCVS, where CO2 sensors were used to dynamically control the ventilation rate. Tests were carried out using tracer gas techniques, with results showing the air age to be adequate at every point of the occupied zones and free of stagnant areas, therefore proving the system's effectiveness and rapid response, and its energy savings.
基金Projects 04JK197T supported by Shaanxi Education Bureau Science Foundation and 2005E202 by Shaanxi Science Foundation
文摘In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.
基金Project F010206 supported by the National Natural Science Foundation of China
文摘In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.
基金the financial support of this work by Japan Ministry of Education, Culture, Sport, Science and Technology and Kyushu University’s Global COE program
文摘Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors.
文摘This paper proposes numerical investigations carried out on a small scale tunnel model airing to study the fire-induced smoke control by longitudinal and longitudinal-natural ventilation systems. We studied the effect of two ventilation systems on the temperature distribution and stratification of the pollutant to estimate the efficiency of ventilation systems. The flow is characterized by the temperature fields, temperature profiles and the Froude number. The numerical tool used is FDS (version 4.0). This numerical study requires validation with an experience of literature. Good agreement with experimental results confirms the possibility of using this code in the problem.
文摘A pressure controlled mechanical ventilator with an automatic secretion clearance function can improve secretion clearance safely and efficiently.Studies on secretion clearance by pressure controlled systems show that these are suited for clinical applications.However,these studies are based on a single lung electric model and neglect the coupling between the two lungs.The research methods applied are too complex for the analysis of a multi-parameter system.In order to understand the functioning of the human respiratory system,this paper develops a dimensionless mathematical model of doublelung mechanical ventilation system with a secretion clearance function.An experiment is designed to verify the mathematical model through comparison of dimensionless experimental data and dimensionless simulation data.Finally,the coupling between the two lungs is studied,and an orthogonal experiment designed to identify the impact of each parameter on the system.
文摘A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.
文摘A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.
文摘A mathematical model of mechanical ventilator describes its behavior during artificial ventilation. This paper purposes to create and simulate Mathematical Model (MM) of Pressure Controlled Ventilator (PCV) signal. This MM represents the respiratory activities and an important controlled parameter during mechanical ventilation—Positive End Expiration Pressure (PEEP). The MM is expressed and modelled using periodic functions with inequalities to control the beginning of inspiration and expiration durations. The created MM of PCV signal is combined with an existing multi compartmental model of respiratory system that is modified and developed in the internal parameters—compliances (C) to test created MM. The created MM and model of respiratory system are constructed and simulated using Simulink package in MATLAB platform. The obtained simulator of mechnical ventilation system could potentially represent the pressure signal of PVC as a complete respiratory cycle and continuance waveform. This simulator is also able to reflect a respiratory mechanic by changing some input variables such as inspiration pressure (IP), PEEP and C, which are monitored in volume, flow, pressure and PV loop waveforms. The obtained simulator has provided a simple environment for testing and monitoring PCV signal and other parameters (volume, flow and dynamic compliance) during artificial ventilation. Furthermore, the simulator may be used for studying in the laboratory and training ventilator’s operators.